scholarly journals Winter wheat residue impact on soil water storage and subsequent corn yield

2020 ◽  
Author(s):  
Luana M. Simão ◽  
Amanda C. Easterly ◽  
Greg Kruger ◽  
Cody F. Creech
2016 ◽  
Vol 13 (1) ◽  
pp. 63-75 ◽  
Author(s):  
K. Imukova ◽  
J. Ingwersen ◽  
M. Hevart ◽  
T. Streck

Abstract. The energy balance of eddy covariance (EC) flux data is typically not closed. The nature of the gap is usually not known, which hampers using EC data to parameterize and test models. In the present study we cross-checked the evapotranspiration data obtained with the EC method (ETEC) against ET rates measured with the soil water balance method (ETWB) at winter wheat stands in southwest Germany. During the growing seasons 2012 and 2013, we continuously measured, in a half-hourly resolution, latent heat (LE) and sensible (H) heat fluxes using the EC technique. Measured fluxes were adjusted with either the Bowen-ratio (BR), H or LE post-closure method. ETWB was estimated based on rainfall, seepage and soil water storage measurements. The soil water storage term was determined at sixteen locations within the footprint of an EC station, by measuring the soil water content down to a soil depth of 1.5 m. In the second year, the volumetric soil water content was additionally continuously measured in 15 min resolution in 10 cm intervals down to 90 cm depth with sixteen capacitance soil moisture sensors. During the 2012 growing season, the H post-closed LE flux data (ETEC =  3.4 ± 0.6 mm day−1) corresponded closest with the result of the WB method (3.3 ± 0.3 mm day−1). ETEC adjusted by the BR (4.1 ± 0.6 mm day−1) or LE (4.9 ± 0.9 mm day−1) post-closure method were higher than the ETWB by 24 and 48 %, respectively. In 2013, ETWB was in best agreement with ETEC adjusted with the H post-closure method during the periods with low amount of rain and seepage. During these periods the BR and LE post-closure methods overestimated ET by about 46 and 70 %, respectively. During a period with high and frequent rainfalls, ETWB was in-between ETEC adjusted by H and BR post-closure methods. We conclude that, at most observation periods on our site, LE is not a major component of the energy balance gap. Our results indicate that the energy balance gap is made up by other energy fluxes and unconsidered or biased energy storage terms.


Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 37 ◽  
Author(s):  
Yan Liang ◽  
Shahbaz Khan ◽  
Ai-xia Ren ◽  
Wen Lin ◽  
Sumera Anwar ◽  
...  

Dryland winter wheat in the Loess Plateau is facing a yield reduction due to a shortage of soil moisture and delayed sowing time. The field experiment was conducted at Loess Plateau in Shanxi, China from 2012 to 2015, to study the effect of subsoiling and conventional tillage and different sowing dates on the soil water storage, Nitrogen (N) accumulation, and remobilization and yield of winter wheat. The results showed that subsoiling significantly improved the soil water storage (0–300 cm soil depth) and increased the contribution of N translocation to grain N and grain yield (17–36%). Delaying sowing time had reduced the soil water storage at sowing and winter accumulated growing degree days by about 180 °C. The contribution of N translocation to grain yield was maximum in glume + spike followed by in leaves and minimum by stem + sheath. Moreover, there was a positive relationship between the N accumulation and translocation and the soil moisture in the 20–300 cm range. Subsoiling during the fallow period and the medium sowing date was beneficial for improving the soil water storage and increased the N translocation to grain, thereby increasing the yield of wheat, especially in a dry year.


2011 ◽  
Vol 10 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Johnathon D. Holman ◽  
Alan J. Schlegel ◽  
Brian L. Olson ◽  
Scott R. Maxwell

1998 ◽  
Vol 49 (1-2) ◽  
pp. 19-27 ◽  
Author(s):  
Drew J. Lyon ◽  
Walter W. Stroup ◽  
Randall E. Brown

Author(s):  
Sumera Anwar ◽  
Yan Fei Liang ◽  
Shahbaz Khan ◽  
Zhi-qiang Gao

Dryland winter wheat in Loess Plateau is facing yield reduction due to shortage of soil moisture and delayed sowing time. Field experiment was conducted at Loess Plateau in Shanxi Province, China from 2012 to 2014, to study the effect of subsoiling and conventional tillage and different sowing dates on the soil water storage and contribution of N accumulation and remobilization to yield of winter wheat. The results showed that subsoiling significantly improved the soil water storage at 0-300 cm depth, improved the number of tillers and pre-anthesis N translocation in various organs of wheat and post-anthesis N accumulation, eventually increased the yield up to 17-36%. Delaying sowing time had reduced the soil water storage at sowing and winter accumulated temperature by about 180˚C. The contribution of N translocation to grain yield was maximum in glume+spike followed by in leaves and minimum by stem+sheath. In addition a close relationship was found between the N accumulation and translocation and the soil moisture in the 20-300 cm. Subsoiling during the fallow period and the medium sowing date was beneficial for improving the soil water storage and increased the N translocation to grain, thereby increasing the yield of wheat, especially in dry year.


Sign in / Sign up

Export Citation Format

Share Document