Photosynthetic characteristics and grain yield of winter wheat (Triticum aestivum L.) in response to fertilizer, precipitation, and soil water storage before sowing under the ridge and furrow system: A path analysis

2019 ◽  
Vol 272-273 ◽  
pp. 12-19 ◽  
Author(s):  
Zhaoyun Dong ◽  
Xudong Zhang ◽  
Juan Li ◽  
Chun Zhang ◽  
Ting Wei ◽  
...  
Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 37 ◽  
Author(s):  
Yan Liang ◽  
Shahbaz Khan ◽  
Ai-xia Ren ◽  
Wen Lin ◽  
Sumera Anwar ◽  
...  

Dryland winter wheat in the Loess Plateau is facing a yield reduction due to a shortage of soil moisture and delayed sowing time. The field experiment was conducted at Loess Plateau in Shanxi, China from 2012 to 2015, to study the effect of subsoiling and conventional tillage and different sowing dates on the soil water storage, Nitrogen (N) accumulation, and remobilization and yield of winter wheat. The results showed that subsoiling significantly improved the soil water storage (0–300 cm soil depth) and increased the contribution of N translocation to grain N and grain yield (17–36%). Delaying sowing time had reduced the soil water storage at sowing and winter accumulated growing degree days by about 180 °C. The contribution of N translocation to grain yield was maximum in glume + spike followed by in leaves and minimum by stem + sheath. Moreover, there was a positive relationship between the N accumulation and translocation and the soil moisture in the 20–300 cm range. Subsoiling during the fallow period and the medium sowing date was beneficial for improving the soil water storage and increased the N translocation to grain, thereby increasing the yield of wheat, especially in a dry year.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8892
Author(s):  
Shahbaz Khan ◽  
Sumera Anwar ◽  
Yu Shaobo ◽  
Zhiqiang Gao ◽  
Min Sun ◽  
...  

Sustainability of winter wheat yield under dryland conditions depends on improving soil water stored during fallow and its efficient use. A 3-year field experiment was conducted in Loess Plateau to access the effect of tillage and N (nitrogen) rates on soil water, N distribution and water- and nitrogen-use efficiency of winter wheat. Deep tillage (DT, 25–30 cm depth) and no-tillage (NT) were operated during fallow season, whereas four N rates (0, 90, 150 and 210 kg ha−1) were applied before sowing. Rates of N and variable rainfall during summer fallow period led to the difference of soil water storage. Soil water storage at anthesis and maturity was decreased with increasing N rate especially in the year with high precipitation (2014–2015). DT has increased the soil water storage at sowing, N content, numbers of spike, grain number, 1,000 grain weight, grain yield, and water and N use efficiency as compared to NT. Grain yield was significantly and positively related to soil water consumption at sowing to anthesis and anthesis to maturity, total plant N, and water-use efficiency. Our study implies that optimum N rate and deep tillage during the fallow season could improve dryland wheat production by balancing the water consumption and biomass production.


2016 ◽  
Vol 13 (1) ◽  
pp. 63-75 ◽  
Author(s):  
K. Imukova ◽  
J. Ingwersen ◽  
M. Hevart ◽  
T. Streck

Abstract. The energy balance of eddy covariance (EC) flux data is typically not closed. The nature of the gap is usually not known, which hampers using EC data to parameterize and test models. In the present study we cross-checked the evapotranspiration data obtained with the EC method (ETEC) against ET rates measured with the soil water balance method (ETWB) at winter wheat stands in southwest Germany. During the growing seasons 2012 and 2013, we continuously measured, in a half-hourly resolution, latent heat (LE) and sensible (H) heat fluxes using the EC technique. Measured fluxes were adjusted with either the Bowen-ratio (BR), H or LE post-closure method. ETWB was estimated based on rainfall, seepage and soil water storage measurements. The soil water storage term was determined at sixteen locations within the footprint of an EC station, by measuring the soil water content down to a soil depth of 1.5 m. In the second year, the volumetric soil water content was additionally continuously measured in 15 min resolution in 10 cm intervals down to 90 cm depth with sixteen capacitance soil moisture sensors. During the 2012 growing season, the H post-closed LE flux data (ETEC =  3.4 ± 0.6 mm day−1) corresponded closest with the result of the WB method (3.3 ± 0.3 mm day−1). ETEC adjusted by the BR (4.1 ± 0.6 mm day−1) or LE (4.9 ± 0.9 mm day−1) post-closure method were higher than the ETWB by 24 and 48 %, respectively. In 2013, ETWB was in best agreement with ETEC adjusted with the H post-closure method during the periods with low amount of rain and seepage. During these periods the BR and LE post-closure methods overestimated ET by about 46 and 70 %, respectively. During a period with high and frequent rainfalls, ETWB was in-between ETEC adjusted by H and BR post-closure methods. We conclude that, at most observation periods on our site, LE is not a major component of the energy balance gap. Our results indicate that the energy balance gap is made up by other energy fluxes and unconsidered or biased energy storage terms.


2017 ◽  
Vol 11 (11) ◽  
pp. 1406-1410 ◽  
Author(s):  
Ivan Ricardo Carvalho ◽  
◽  
Maicon Nardino ◽  
Diego Nicolau Follmann ◽  
Gustavo Henrique Demari ◽  
...  

2021 ◽  
Author(s):  
Shengping Li ◽  
Guopeng Liang ◽  
Xueping Wu ◽  
Jinjing Lu ◽  
Erwan Plougonven ◽  
...  

Abstract. Drought is increasingly common due to frequent occurrences of extreme weather events, which further increases soil water repellency (SWR) and influences grain yield. Conservation agriculture is playing a vital role in attaining high food security and it could also increase SWR. However, the relationship between SWR and grain yield under conservation agriculture is still not fully understood. We studied the impact of SWR in 0–5 cm, 5–10 cm, and 10–20 cm layers during three growth periods on grain yield from a soil water availability perspective using a long-term field experiment. In particular, we assessed the effect of SWR on soil water content under two rainfall events with different rainfall intensities. Three treatments were conducted: conventional tillage (CT), reduced tillage (RT), and no-tillage (NT). The results showed that the water repellency index (RI) of NT and RT treatments in 0–20 cm layers was increased by 12.9 %–39.9 % and 5.7 %–18.2 % compared to CT treatment during the three growth periods, respectively. The effect of the RI on soil water content became more obvious with the decrease in soil moisture following rainfall, which was also influenced by rainfall intensity. The RI played a prominent role in increasing soil water storage during the three growth periods compared to the soil total porosity, penetration resistance, mean weight diameter, and organic carbon content. Furthermore, although the increment in the RI under NT treatment increased the soil water storage, grain yield was not influenced by RI (p > 0.05) because the grain yield under NT treatment was mainly driven by penetration resistance and least limiting water range (LLWR). The higher water sorptivity increased LLWR and water use efficiency, which further increased the grain yield under RT treatment. Overall, SWR, which was characterized by water sorptivity and RI, had the potential to influence grain yield by changing soil water availability (e.g. LLWR and soil water storage) and RT treatment was the most effective tillage management compared to CT and NT treatments in improving grain yield.


2021 ◽  
Vol 50 (4) ◽  
pp. 1127-1132
Author(s):  
Wubo Li ◽  
Meng Li ◽  
Yunshuo Xu ◽  
Yan Shi

Effects of different dosages of potassium silicate fertilizer on photosynthetic characteristics and yield of winter wheat under field conditions were studied. Four different dosages: 0, 45, 90 and 135kg/ha were applied. Results showed that the chlorophyll content, net photosynthetic rate of wheat flag leaf firstly increased and then decreased with the increase of levels of potassium silicate fertilizer. By the change of SPAD values after flowering, when the application of potassium silicate fertilizer was 90 kg/ha, the existence time of chlorophyll in flag leaf was significantly long, and the net photosynthetic rate was significantly increased. The 1000-grain weight of winter wheat significantly increased and the yield the highest. Overall, when the applied amount of potassium silicate fertilizer was 90 kg/ha, the performances of winter wheat were best. Bangladesh J. Bot. 50(4): 1127-1132, 2021 (December)


2011 ◽  
Vol 10 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Johnathon D. Holman ◽  
Alan J. Schlegel ◽  
Brian L. Olson ◽  
Scott R. Maxwell

2020 ◽  
Author(s):  
Luana M. Simão ◽  
Amanda C. Easterly ◽  
Greg Kruger ◽  
Cody F. Creech

Sign in / Sign up

Export Citation Format

Share Document