Pursuing sustainable high‐yield winter wheat via pre‐anthesis dry matter and nitrogen accumulation by optimizing nitrogen management

2021 ◽  
Author(s):  
Xiaoming He ◽  
Ling Zhang ◽  
Yuncai Hu ◽  
Zhengyuan Liang ◽  
Wei Zhang ◽  
...  
2014 ◽  
Vol 37 (5) ◽  
pp. 723-737 ◽  
Author(s):  
Ahmad Khan ◽  
Mohammad Tariq Jan ◽  
Amanullah Jan ◽  
Zahir Shah ◽  
Mohammad Arif

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11189
Author(s):  
Rui Yang ◽  
Ke Liu ◽  
Shiying Geng ◽  
Chengxiang Zhang ◽  
Lijun Yin ◽  
...  

The rice-wheat (RW) cropping system is one of the most prevalent double-cropping systems used to farm the Jianghan Plain in China. However, it can lead to low wheat yields and reduced nitrogen use efficiency compared with dryland wheat (DW). We evaluated wheat yield and nitrogen use efficiency for two rotations (summer rice-winter wheat and summer soybean-winter wheat) from 2017 to 2019 and applied the results to improve nitrogen management for planting wheat after rice in the Jianghan Plain. Field experiments were conducted over two years with two nitrogen treatments: traditional nitrogen management (M1: 90 kg N ha−1 was applied at sowing and jointing, respectively ) and optimized nitrogen management (M2: 60 kg N ha−1 was applied at sowing, wintering and jointing, respectively). The highest total wheat production was achieved under M2 for both cropping systems and the two-year average yield was 6,128 kg ha−1 in DW and 6,166 kg ha−1 in RW. The spike number in DW was 15% higher than RW in M1 and 13% higher in M2, but the kernel per spike and 1,000-grain weight was lower than RW. The nitrogen accumulation of DW was 24% higher than RW in M1 and 33% in M2. Compared with RW, DW had higher NO3− content in the soil surface layer (0–20 cm) and a higher root length density (RLD) in the deeper layer (40–60 cm), which may account for the higher N uptake in DW. Our results show that the grain yield of RW was comparable to that of DW by optimum nitrogen management. The rice-wheat cropping system combined with optimum nitrogen management may be of economic and agronomic benefit to the wheatbelt in the Jianghan Plain in China.


2004 ◽  
Vol 87 (2-3) ◽  
pp. 221-233 ◽  
Author(s):  
Sabine Demotes-Mainard ◽  
Marie-Hélène Jeuffroy

2019 ◽  
Vol 21 (1) ◽  
pp. 165 ◽  
Author(s):  
Dennis N. Lozada ◽  
Jayfred V. Godoy ◽  
Brian P. Ward ◽  
Arron H. Carter

Secondary traits from high-throughput phenotyping could be used to select for complex target traits to accelerate plant breeding and increase genetic gains. This study aimed to evaluate the potential of using spectral reflectance indices (SRI) for indirect selection of winter-wheat lines with high yield potential and to assess the effects of including secondary traits on the prediction accuracy for yield. A total of five SRIs were measured in a diversity panel, and F5 and doubled haploid wheat breeding populations planted between 2015 and 2018 in Lind and Pullman, WA. The winter-wheat panels were genotyped with 11,089 genotyping-by-sequencing derived markers. Spectral traits showed moderate to high phenotypic and genetic correlations, indicating their potential for indirect selection of lines with high yield potential. Inclusion of correlated spectral traits in genomic prediction models resulted in significant (p < 0.001) improvement in prediction accuracy for yield. Relatedness between training and test populations and heritability were among the principal factors affecting accuracy. Our results demonstrate the potential of using spectral indices as proxy measurements for selecting lines with increased yield potential and for improving prediction accuracy to increase genetic gains for complex traits in US Pacific Northwest winter wheat.


Sign in / Sign up

Export Citation Format

Share Document