scholarly journals Micro‐computed tomography for the 3D time‐resolved investigation of monodisperse droplet generation in a co‐flow setup

AIChE Journal ◽  
2020 ◽  
Author(s):  
Julia Schuler ◽  
Laura Maria Neuendorf ◽  
Kai Petersen ◽  
Norbert Kockmann
2021 ◽  
Author(s):  
Julia Schuler ◽  
Laura Maria Neuendorf ◽  
Kai Petersen ◽  
Norbert Kockmann

2007 ◽  
Vol 103 (5) ◽  
pp. 1848-1856 ◽  
Author(s):  
Wilfred W. Lam ◽  
David W. Holdsworth ◽  
Louise Y. Du ◽  
Maria Drangova ◽  
David G. McCormack ◽  
...  

We measured ventilation (V̇) in seven anesthetized, mechanically ventilated, supine Wistar rats. Images of the whole lung were continuously acquired using a dynamic, flat-panel volumetric micro-computed tomography (micro-CT) scanner during ventilation with a xenon/oxygen (Xe-O2) gas mixture. Forty time-resolved volumes consisting of eighty 0.45-mm-thick slices (covering the entire lung) were acquired in 40 s, using a gantry rotation rate of one rotation per second. The animals were ventilated at a respiratory rate of 60 breaths/min, matching the gantry rotation rate, and imaged without suspending ventilation. A previously published theoretical model was modified slightly and used to calculate the whole lung ventilation from volumes of interest generated by seeded region growing. Linear regression of calculated whole lung ventilation volumes vs. expected tidal volumes yielded a slope of 1.12 ± 0.11 (slope ± SE) and a y-intercept of −1.56 ± 0.42 ml ( y-intercept ± SE) with 95% confidence intervals of 0.83 to 1.40 and −2.6 to −0.5 ml, respectively. The same model was used to calculate the regional ventilation in axial slices for each animal. Voxels were fit to the model to yield a map of V̇, which displayed an anterior/posterior gravitational gradient of (−3.9 ± 1.8) × 10−6 ml·s−1·cm−1 for slices immediately superior to the diaphragm and (−6.0 ± 2.4) × 10−6 ml·s−1·cm−1 for slices at the midlevel of the heart (mean ± SD). Thus continuous Xe-enhanced computed tomography enables the noninvasive determination of regional V̇ with the temporal and spatial resolution necessary for rats.


2021 ◽  
Author(s):  
Julia Schuler ◽  
Laura Maria Neuendorf ◽  
Kai Petersen ◽  
Norbert Kockmann

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1370
Author(s):  
Petr Koudelka ◽  
Daniel Kytyr ◽  
Tomas Fila ◽  
Jan Sleichrt ◽  
Vaclav Rada ◽  
...  

Fatigue initiation and the propagation of microcracks in a cortical bone is an initial phase of damage development that may ultimately lead to the formation of macroscopic fractures and failure of the bone. In this work, a time-resolved high-resolution X-ray micro-computed tomography (CT) was performed to investigate the system of microcracks in a bone sample loaded by a simulated gait cycle. A low-cycle (1000 cycles) fatigue loading in compression with a 900 N peak amplitude and a 0.4 Hz frequency simulating the slow walk for the initialization of the internal damage of the bone was used. An in-house developed laboratory X-ray micro-CT imaging system coupled with a compact loading device were employed for the in situ uni-axial fatigue experiments reaching a μ2μm effective voxel size. To reach a comparable quality of the reconstructed 3D images with the SEM microscopy, projection-level corrections and focal spot drift correction were performed prior to the digital volume correlation and evaluation using differential tomography for the identification of the individual microcracks in the microstructure. The microcracks in the intact bone, the crack formation after loading, and the changes in the topology of the microcracks were identified on a volumetric basis in the microstructure of the bone.


2013 ◽  
Author(s):  
Agnes Ostertag ◽  
Francoise Peyrin ◽  
Sylvie Fernandez ◽  
Jean-Denis Laredo ◽  
Vernejoul Marie-Christine De ◽  
...  

2020 ◽  
Vol 45 (3) ◽  
pp. 478-482
Author(s):  
Steven R. Manchester

Abstract—The type material on which the fossil genus name Ampelocissites was established in 1929 has been reexamined with the aid of X-ray micro-computed tomography (μ-CT) scanning and compared with seeds of extant taxa to assess the relationships of these fossils within the grape family, Vitaceae. The specimens were collected from a sandstone of late Paleocene or early Eocene age. Although originally inferred by Berry to be intermediate in morphology between Ampelocissus and Vitis, the newly revealed details of seed morphology indicate that these seeds represent instead the Ampelopsis clade. Digital cross sections show that the seed coat maintains its thickness over the external surfaces, but diminishes quickly in the ventral infolds. This feature, along with the elliptical chalaza and lack of an apical groove, indicate that Ampelocissites lytlensis Berry probably represents Ampelopsis or Nekemias (rather than Ampelocissus or Vitis) and that the generic name Ampelocissites may be useful for fossil seeds with morphology consistent with the Ampelopsis clade that lack sufficient characters to specify placement within one of these extant genera.


Sign in / Sign up

Export Citation Format

Share Document