Comments on surface boundary conditions for small amplitude waves on a falling liquid film

AIChE Journal ◽  
1972 ◽  
Vol 18 (6) ◽  
pp. 1262-1263
Author(s):  
S. P. Lin
1986 ◽  
Vol 30 (04) ◽  
pp. 256-274
Author(s):  
Frederick Stern

The boundary-value problem for the boundary layer of a surface-piercing body is formulated in a rigorous manner in which proper consideration is given to the viscous-fluid free-surface boundary conditions. Simplifications that are appropriate for small-amplitude waves are investigated. To this end, order-of-magnitude estimates are derived for the flow field in the neighborhood of the body-boundary-layer/free-surface juncture. It is shown that, for laminar flow, the parameter Ak/ϵ, where Ak is the wave steepness and ϵ is the nondimensional boundary-layer thickness, is important for characterizing the flow. In particular, for Ak/ϵ sufficiently large such that the free-surface boundary conditions have a significant influence a consistent formulation requires the solution of higher-order viscous-flow equations. For turbulent flow, these conclusions cannot be reached with the same degree of certainty. Numerical results are presented for the model problem of a combination Stokes-wave/flat plate. For this initial investigation, the usual thin-boundary-layer equations were solved using a three-dimensional implicit finite-difference method. The calculations are for laminar and turbulent flow and both demonstrate and quantify the influence of waves on boundary-layer development. Calculations were made using both the small-amplitude-wave and more approximate free-surface boundary conditions. Both the external-flow pressure gradients and the free-surface boundary conditions are shown to have a significant influence. The former influence penetrates to a depth of about half the wavelength and the latter is confined to a region very close to the free surface.


2020 ◽  
Author(s):  
MODI ZHU ◽  
Jingfeng Wang ◽  
Husayn Sharif ◽  
Valeriy Ivanov ◽  
Aleksey Sheshukov

Author(s):  
Andrea Ferrantelli ◽  
Jevgeni Fadejev ◽  
Jarek Kurnitski

As the energy efficiency demands for future buildings become increasingly stringent, preliminary assessments of energy consumption are mandatory. These are possible only through numerical simulations, whose reliability crucially depends on boundary conditions. We therefore investigate their role in numerical estimates for the usage of geothermal energy, performing annual simulations of transient heat transfer for a building employing a geothermal heat pump plant and energy piles. Starting from actual measurements, we solve the heat equations in 2D and 3D using COMSOL Multiphysics and IDA-ICE, and discover a negligible impact of the multiregional ground surface boundary conditions. Moreover, we verify that the thermal mass of the soil medium induces a small vertical temperature gradient on the piles surface. We also find a roughly constant temperature on each horizontal cross-section, with nearly identical values if the average temperature is integrated over the full plane or evaluated at one single point. Calculating the yearly heating need for an entire building we then show that the chosen upper boundary condition affects the energy balance dramatically. Using directly the pipes’ outlet temperature induces a 54% overestimation of the heat flux, while the exact ground surface temperature above the piles reduces the error to 0.03%.


Sign in / Sign up

Export Citation Format

Share Document