Ultrastructural observation of anterior pituitary gonadotrophs following hypophysial portal vessel infusion of luteinizing hormone-releasing hormone

1975 ◽  
Vol 144 (4) ◽  
pp. 549-555 ◽  
Author(s):  
J. L. Luborsky-Moore ◽  
Steven J. Poliakoff ◽  
W. Curtis Worthington
2013 ◽  
pp. 551-566
Author(s):  
John Reynard ◽  
Simon Brewster ◽  
Suzanne Biers

Male reproductive physiology 552 Aetiology and evaluation of male infertility 554 Investigation of male infertility 556 Oligozoospermia and azoospermia 560 Varicocele 562 Treatment options for male infertility 564 The hypothalamus secretes luteinizing hormone-releasing hormone (LHRH), also known as gonadotrophin-releasing hormone (GnRH). This causes the pulsatile release of anterior pituitary gonadotrophins called follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which act on the testis. FSH stimulates the seminiferous tubules to secrete inhibin and produce sperm; LH acts on Leydig cells to produce testosterone (...


1978 ◽  
Vol 76 (3) ◽  
pp. 487-491 ◽  
Author(s):  
K. YAMASHITA ◽  
M. MIENO ◽  
T. SHIMIZU ◽  
ER. YAMASHITA

The rate of secretion of 17-oxosteroids by the testes of anaesthetized dogs in vivo was used as an index of LH secretion. Intracarotid injection of luteinizing hormone releasing hormone (LH-RH, 1, 5 or 10 μg/kg body wt) resulted in an increase in the testicular 17-oxosteroid secretion which was roughly proportional to the dose administered and which reached a maximum 60 min after the injection. Testicular output of 17-oxosteroids was unaffected by administration of melatonin (10 or 100 μg/kg body wt) into the carotid artery. When LH-RH (5 μg/kg) was injected into the carotid artery 3 h after intracarotid injection of melatonin (10 or 100 μg/kg), the testicular response to LH-RH was considerably diminished. Pretreatment with melatonin (100 μg/kg) did not alter the testicular response to human chorionic gonadotrophin (20 i.u./kg body wt) given i.v. It is concluded that melatonin may act directly on the anterior pituitary gland in dogs to inhibit the LH-RH-induced release of LH.


1979 ◽  
Vol 81 (2) ◽  
pp. 175-182 ◽  
Author(s):  
J. SANDOW ◽  
W. KÖNIG

The minimal structural requirements for gonadotrophin releasing activity were studied with fragments of a highly active analogue of luteinizing hormone releasing hormone (LH-RH), [d-Ser(But)6]LH-RH(1–9)nonapeptide-ethylamide (Hoe 766). All fragments are related to the C-terminal structure of LH-RH and have increased enzyme stability. Ovulation in phenobarbitone-blocked rats was induced with a median effective dose/rat, of 1·9 μg of the (3–9)-heptapeptide, Trp-Ser-Tyr-d-Ser(But)-Leu-Arg-Pro-ethylamide and 6·8, 18·0 and 38·3 μg for the (4–9), (5–9) and (6–9) fragments respectively. The (3–9)-heptapeptide and (4–9)-hexapeptide induced release of LH and FSH in phenobarbitone-blocked rats with a ratio similar to that of LH-RH. Degradation of LH-RH by enzyme preparations of liver, kidney and hypothalamic or anterior pituitary tissue was not modified by addition of the (3–9)-heptapeptide fragment. The organ distribution of the 125I-labelled (3–9)-heptapeptide fragments was similar to LH-RH, but not to Hoe 766. The peptide accumulated in liver and kidney, but was eliminated from the anterior pituitary gland 15 min after i.v. injection, whereas Hoe 766 showed progressive accumulation in the pituitary gland (tissue: plasma ratio = 6·6 after 60 min). In contrast to C-terminal fragments of LH-RH, the corresponding fragments of nonapeptide analogues retained significant biological activity, and the minimal structural requirements for LH release may be related to the C-terminal sequence of LH-RH.


Sign in / Sign up

Export Citation Format

Share Document