Structural response of adult rat sertoli cells to peritubular fibroblasts in vitro

1981 ◽  
Vol 160 (3) ◽  
pp. 343-358 ◽  
Author(s):  
Don F. Cameron ◽  
R. R. Markwald
Endocrinology ◽  
2007 ◽  
Vol 148 (3) ◽  
pp. 1255-1265 ◽  
Author(s):  
Jian Guo ◽  
Shi-Xin Tao ◽  
Min Chen ◽  
Yu-Qiang Shi ◽  
Zhu-Qiang Zhang ◽  
...  

We demonstrated in this study that liver receptor homolog-1 (LRH-1) was expressed in the round spermatids in normal monkey testis, and no LRH-1 signal was observed in the Sertoli cells. After local warming (43 C) the monkey testis, however, LRH-1 expression was induced in the Sertoli cells in coincidence with activation of cytokeratin 18 (CK-18), a Sertoli cell dedifferentiated marker. Furthermore, we isolated rat primary Sertoli cells from testes at various stages of development and treated with 43 C water in vitro. The changes in LRH-1 as well as CK-18 expression were analyzed by confocal immunohistochemistry and Western blot. The results showed that LRH-1 was stage-dependently expressed in the Sertoli cells; no LRH-1-positive signal was detected in the cells obtained from the testes of adult rat on d 60 after birth when mature spermatozoa in the testis was completed. However, the mature Sertoli cells were warmed at the 43 C water bath for 15 min, and the LRH-1 signal was remarkably induced in a time-dependent manner, just like the changes of CK-18 expression in the Sertoli cells, suggesting that the heat-induced dedifferentiation of the mature Sertoli cells might be related to LRH-1 regulation. LRH-1 expression induced by the heat treatment was completely inhibited by the addition of ERK inhibitor U0126 in the culture, indicating that the heat-induced LRH-1 expression in the Sertoli cells may be regulated via ERK1/2 activation pathway. Testosterone was found to have no such effect on LRH-1 expression in the monkey and rat Sertoli cells.


2006 ◽  
Vol 189 (2) ◽  
pp. 381-395 ◽  
Author(s):  
P Sluka ◽  
L O’Donnell ◽  
J R Bartles ◽  
P G Stanton

Spermatogenesis is dependent on the ability of Sertoli cells to form mature junctions that maintain a unique environment within the seminiferous epithelium. Adjacent Sertoli cells form a junctional complex that includes classical adherens junctions and testis-specific ectoplasmic specialisations (ES). The regulation of inter-Sertoli cell junctions by the two main endocrine regulators of spermatogenesis, FSH and testosterone, is unclear. This study aimed to investigate the effects of FSH and testosterone on inter-Sertoli cell adherens junctions (as determined by immunolocalisation of cadherin, catenin and actin) and ES junctions (as determined by immunolocalisation of espin, actin and vinculin) in cultured immature Sertoli cells and GnRH-immunised adult rat testes given FSH or testosterone replacement in vivo. When hormones were absent in vitro, adherens junctions formed as discrete puncta between interdigitating, finger-like projections of Sertoli cells, but ES junctions were not present. The adherens junction puncta included actin filaments that were oriented perpendicularly to the Sertoli cell plasma membrane, but were not associated with the intermediate filament protein vimentin. When FSH was added in vitro, ES junctions formed, and adjacent adherens junction puncta fused into extensive adherens junction belts. After hormone suppression in vivo, ES junctions were absent, while FSH replacement restored ES junctions, as confirmed by electron microscopy and confocal analysis of ES-associated proteins. Testosterone alone did not affect adherens junctions or ES in vitro or in vivo. We conclude that FSH can regulate the formation of ES junctions and stimulate the organisation and orientation of extensive adherens junctions in Sertoli cells.


2009 ◽  
Vol 182 (2-3) ◽  
pp. 112-118 ◽  
Author(s):  
Hamdy A.A. Aly ◽  
David A. Lightfoot ◽  
Hany A. El-Shemy

2005 ◽  
Vol 187 (1) ◽  
pp. 125-134 ◽  
Author(s):  
Y Okuma ◽  
A E O’Connor ◽  
J A Muir ◽  
P G Stanton ◽  
D M de Kretser ◽  
...  

The regulation of Sertoli cell activin A and inhibin B secretion during inflammation was investigated in vitro. Adult rat Sertoli cells were incubated with the inflammatory mediators, lipopolysaccharide (LPS), interleukin-1β (IL-1β), IL-6 and the IL-1 receptor antagonist (IL-1ra) over 48 h in culture. Activin A, inhibin B and IL-1α were measured in the culture medium by specific two-site ELISAs. Both IL-1β- and LPS-stimulated activin A and inhibited inhibin B secretion. LPS also stimulated the production of IL-1α in the cultures. In contrast to IL-1β, IL-6 had no effect on activin A, although it did have a significant inhibitory effect on inhibin B secretion. Ovine follicle-stimulating hormone (FSH) and the cAMP analogue dibutyryl cAMP opposed the actions of IL-1 and LPS by suppressing activin A and IL-1α secretion and by stimulating inhibin B. Blocking IL-1 activity in the cultures by addition of an excess of IL-1ra completely prevented the response of activin A to exogenous IL-1β, and reduced the response to LPS by 50%. In the presence of IL-1ra, basal secretion of inhibin B was increased, but IL-1ra was unable to reverse the suppression of inhibin B by LPS. These data indicate the importance of both IL-1 isoforms in regulating secretion of activin A and inhibin B by mature Sertoli cells during inflammation. The data also establish that inflammation exerts its effects on activin A and inhibin B secretion via other pathways in addition to those mediated by IL-1, and that hormonal stimulation by FSH and cAMP moderates the Sertoli cell response to inflammation. Interference with the complex interactions between these cytokines and hormones may contribute to the disruption of reproductive function that can accompany infection and illness in men.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2405
Author(s):  
Hassan Kabbesh ◽  
Muhammad A. Riaz ◽  
Alexandra D. Jensen ◽  
Georgios Scheiner-Bobis ◽  
Lutz Konrad

A protocol for the isolation and long-term propagation of adult rat Sertoli cells (SCs) using conditional reprogramming (CR) was developed and the formation of tight junctions as an in vitro model for the blood testis barrier (BTB) was studied. Three pure primary SC lines were isolated successfully and maintained for several months without significant changes in expression levels of SC-typical markers such as SRY-box transcription factor 9 (SOX9), transferrin, clusterin, androgen receptor (AR), and GATA binding protein 1 (GATA1). In addition to AR expression, the tight junction proteins, zonula occludens-1 (ZO-1) and the junctional adhesion molecule-3 (JAM-3), were upregulated and the SC barrier integrity was enhanced by testosterone. Peritubular/myoid cells did not increase the tightness of the SC. The cytokines, interleukin-6 (IL-6), bone morphogenetic protein-2 (BMP2), and transforming growth factor beta-3 (TGF-β3), negatively affected the tightness of the SC barrier. We have established a protocol for the isolation and long-term propagation of highly pure primary adult rat SCs, which are able to respond to androgen treatments, to form tight junctions and to maintain the mRNA expression of SC-specific genes. By applying this new method, adult SCs can now be analyzed in more detail and might serve as an in vitro model for the study of many SC functions.


2010 ◽  
Vol 24 (4) ◽  
pp. 1266-1272 ◽  
Author(s):  
Hamdy A.A. Aly ◽  
David A. Lightfoot ◽  
Hany A. El-Shemy

Author(s):  
M. Kraemer ◽  
J. Foucrier ◽  
J. Vassy ◽  
M.T. Chalumeau

Some authors using immunofluorescent techniques had already suggested that some hepatocytes are able to synthetize several plasma proteins. In vitro studies on normal cells or on cells issued of murine hepatomas raise the same conclusion. These works could be indications of an hepatocyte functionnal non-specialization, meanwhile the authors never give direct topographic proofs suitable with this hypothesis.The use of immunoenzymatic techniques after obtention of monospecific antisera had seemed to us useful to bring forward a better knowledge of this problem. We have studied three carrier proteins (transferrin = Tf, hemopexin = Hx, albumin = Alb) operating at different levels in iron metabolism by demonstrating and localizing the adult rat hepatocytes involved in their synthesis.Immunological, histological and ultrastructural methods have been described in a previous work.


1991 ◽  
Vol 125 (3) ◽  
pp. 280-285 ◽  
Author(s):  
J. Alan Talbot ◽  
Ann Lambert ◽  
Robert Mitchell ◽  
Marek Grabinski ◽  
David C. Anderson ◽  
...  

Abstract We have investigated the role of Ca2+ in the control of FSH-induced estradiol secretion by Sertoli cells isolated from 8-10 days old rats. Exogenous Ca2+ (4-8 mmol/1) inhibited FSH-stimulated E2 secretion such that, with 8 mmol/l Ca2+ and FSH (8 IU/l) E2 secretion decreased from 2091±322 to 1480±84 pmol/l (p<0.002), whilst chelation of Ca2+ in the culture medium with EGTA (3 mmol/l) increased E2 secretion from 360±45 to 1242±133 pmol/l) in the absence of FSH. Further, EGTA (3 mmol/l) markedly potentiated FSH (8 IU/l), forskolin (1 μmol/l) and dibutyryl cAMP (1 mmol/l)-stimulated E2 secretion. Addition of the Ca2+ ionophores, ionomycin (2-5 μmol/l) and A23187 (2 μmol/l), inhibited FSH (8 IU/l)-stimulated E2 secretion by >80%. The effect of ionomycin was totally reversible, whereas that of A23187 was irreversible. Ionomycin (5 μmol/l) had no effect on EGTA-induced E2 secretion in the absence of FSH, but reduced EGTA-provoked E2 secretion by 59% in the presence of FSH (8 IU/l). Similarly, forskolin- and dibutyryl cAMP-provoked E2 production was inhibited 46-50% by ionomycin (5 μmol/l). We conclude that FSH-induced E2 secretion from immature rat Sertoli cells is modulated by intra- and extracellular Ca2+.


2021 ◽  
Vol 22 (6) ◽  
pp. 2971
Author(s):  
Shizuka Takaku ◽  
Masami Tsukamoto ◽  
Naoko Niimi ◽  
Hideji Yako ◽  
Kazunori Sango

Besides its insulinotropic actions on pancreatic β cells, neuroprotective activities of glucagon-like peptide-1 (GLP-1) have attracted attention. The efficacy of a GLP-1 receptor (GLP-1R) agonist exendin-4 (Ex-4) for functional repair after sciatic nerve injury and amelioration of diabetic peripheral neuropathy (DPN) has been reported; however, the underlying mechanisms remain unclear. In this study, the bioactivities of Ex-4 on immortalized adult rat Schwann cells IFRS1 and adult rat dorsal root ganglion (DRG) neuron–IFRS1 co-culture system were investigated. Localization of GLP-1R in both DRG neurons and IFRS1 cells were confirmed using knockout-validated monoclonal Mab7F38 antibody. Treatment with 100 nM Ex-4 significantly enhanced survival/proliferation and migration of IFRS1 cells, as well as stimulated the movement of IFRS1 cells toward neurites emerging from DRG neuron cell bodies in the co-culture with the upregulation of myelin protein 22 and myelin protein zero. Because Ex-4 induced phosphorylation of serine/threonine-specific protein kinase AKT in these cells and its effects on DRG neurons and IFRS1 cells were attenuated by phosphatidyl inositol-3′-phosphate-kinase (PI3K) inhibitor LY294002, Ex-4 might act on both cells to activate PI3K/AKT signaling pathway, thereby promoting myelination in the co-culture. These findings imply the potential efficacy of Ex-4 toward DPN and other peripheral nerve lesions.


Sign in / Sign up

Export Citation Format

Share Document