scholarly journals NPM1mutant variant allele frequency correlates with leukemia burden but does not provide prognostic information inNPM1‐mutated acute myeloid leukemia

2019 ◽  
Vol 94 (6) ◽  
pp. E158-E160 ◽  
Author(s):  
Hussein A. Abbas ◽  
Farhad Ravandi ◽  
Sanam Loghavi ◽  
Keyur P. Patel ◽  
Gautam Borthakur ◽  
...  
Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 599-599
Author(s):  
Franck Rapaport ◽  
Marc Robert de Massy ◽  
Adil al Hinai ◽  
Mathijs A. Sanders ◽  
Todd Hricik ◽  
...  

Abstract Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. Unfortunately, a significant proportion of patients relapse after responding to initial treatment reflecting our poor understanding of the mechanisms mediating therapy resistance and relapse. We hypothesized that understanding the evolution of the mutational landscape between diagnosis and relapse is essential in order to identify mutational markers associated with sensitivity or resistance to treatment. To address this hypothesis we assembled a cohort of 53 clinically annotated, paired AML patient samples (diagnosis, relapse and patient-matched germline samples; mean age = 52 years). All patients achieved clinical remission after treatment with combination chemotherapy (cytarabine arabinoside and an anthracycline) during induction phase followed by consolidation chemotherapy treatment with or without a stem cell transplantation in first remission. Serial samples were collected at the time of initial diagnosis and within three months of relapse (mean time to relapse 455 days). We performed whole-exome and targeted capture followed by high-throughput sequencing. We aligned samples with BWA, recalibrated them with The Genome Analysis Toolkit (GATK) and then compiled integrated calls from substitution and indel callers (Mutect, Scalpel, Strelka, Varscan and Somatic Sniper). We performed several layers of post-processing filtering on these calls, including removing non-oncogenic mutations and previously documented non-somatic variants, and correcting for the variant allele fraction of indel calls. We filtered out the variants that were found to occur in non-copy number neutral re-arrangements using the clinically determined cytogenetic data. Furthermore, we assessed for copy number events, including loss of heterozygosity events, and for the presence and the variant allele frequency of the FLT3-ITD in our samples. We observed a median of 4.5 and 5 mutations per patient at diagnosis and relapse, respectively, with 3.5 mutations being shared by paired diagnosis and relapse samples. When limiting our analysis to genes previously shown to contribute to leukemogenesis, we found a median of 1.5 and 2 mutations per patient at diagnosis and relapse, with 1 mutation being shared. FLT3, DNMT3A, IDH2, NRAS, RUNX1 and TET2 were among the most commonly mutated genes, with a detected presence rate of 28%, 25%, 19%, 19%, 11% and 11%, respectively, in the diagnosis samples and 39%, 23%, 19%, 4%, 13% and 11% in the relapse samples. We identified significant variation in the variant allele frequency (VAF) for several of the mutations related to these genes and others, denoting variations in the cellular prevalence of the related clones after adjustment for tumor content using the mutations with the highest VAF to delineate clonal architecture. Specifically, we observed that DNMT3A, IDH2, TET2 variants are most commonly present in the bulk AML clone, and persist after treatment. WT1, GATA2 and FLT3mutations are predicted to confer relative resistance to standard combination chemotherapy treatment based on their increased VAF at relapse, whereas KRAS and NRAS subclone(s) are more sensitive to chemotherapy since their VAFs decrease following multiagent chemotherapy. Fifteen patients presented new events in leukemogenesis-related genes at relapse. Overall, our results support a model of AML as a disease with a complex mutational hierarchy and clonal architecture and provide further insight into how these change in response to standard induction therapy. Our data suggests that future efforts to develop targeted therapies with maximal clinical benefit in combination with standard induction treatments should be placed on mutated genes identified to be more strongly associated with disease relapse. Authors contributed equally: F. Rapaport and M.R. De Massy Authors contributed equally: A. al Hinai and M.A. Sanders Disclosures Guzman: Cellectis: Research Funding. Roboz:Cellectis: Research Funding; Agios, Amgen, Amphivena, Astex, AstraZeneca, Boehringer Ingelheim, Celator, Celgene, Genoptix, Janssen, Juno, MEI Pharma, MedImmune, Novartis, Onconova, Pfizer, Roche/Genentech, Sunesis, Teva: Consultancy. Melnick:Janssen: Research Funding. Levine:Qiagen: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy.


Cancer ◽  
2019 ◽  
Vol 126 (4) ◽  
pp. 765-774 ◽  
Author(s):  
Koji Sasaki ◽  
Rashmi Kanagal‐Shamanna ◽  
Guillermo Montalban‐Bravo ◽  
Rita Assi ◽  
Elias Jabbour ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Brooks A. Benard ◽  
Logan B. Leak ◽  
Armon Azizi ◽  
Daniel Thomas ◽  
Andrew J. Gentles ◽  
...  

AbstractThe impact of clonal heterogeneity on disease behavior or drug response in acute myeloid leukemia remains poorly understood. Using a cohort of 2,829 patients, we identify features of clonality associated with clinical features and drug sensitivities. High variant allele frequency for 7 mutations (including NRAS and TET2) associate with dismal prognosis; elevated GATA2 variant allele frequency correlates with better outcomes. Clinical features such as white blood cell count and blast percentage correlate with the subclonal abundance of mutations such as TP53 and IDH1. Furthermore, patients with cohesin mutations occurring before NPM1, or transcription factor mutations occurring before splicing factor mutations, show shorter survival. Surprisingly, a branched pattern of clonal evolution is associated with superior clinical outcomes. Finally, several mutations (including NRAS and IDH1) predict drug sensitivity based on their subclonal abundance. Together, these results demonstrate the importance of assessing clonal heterogeneity with implications for prognosis and actionable biomarkers for therapy.


2008 ◽  
Vol 32 (10) ◽  
pp. 1505-1509 ◽  
Author(s):  
Masamitsu Yanada ◽  
Gautam Borthakur ◽  
Guillermo Garcia-Manero ◽  
Farhad Ravandi ◽  
Stefan Faderl ◽  
...  

2020 ◽  
Vol 22 (6) ◽  
Author(s):  
Ludovica Marando ◽  
Brian J. P. Huntly

Abstract Purpose of Review The field of acute myeloid leukemia (AML) has been revolutionized in recent years by the advent of high-throughput techniques, such as next-generation sequencing. In this review, we will discuss some of the recently identified mutations that have defined a new molecular landscape in this disease, as well as their prognostic, predictive, and therapeutic implications. Recent Findings Recent studies have shown how many cases of AML evolve from a premalignant period of latency characterized by the accumulation of several mutations and the emergence of one or multiple dominant clones. The pattern of co-occurring mutations and cytogenetic abnormalities at diagnosis defines risk and can determine therapeutic approaches to induce remission. Besides the genetic landscape at diagnosis, the continued presence of particular gene mutations during or after treatment carries prognostic information that should further influence strategies to maintain remission in the long term. Summary The recent progress made in AML research is a seminal example of how basic science can translate into improving clinical practice. Our ability to characterize the genomic landscape of individual patients has not only improved our ability to diagnose and prognosticate but is also bringing the promise of precision medicine to fruition in the field.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2396-2396
Author(s):  
Richard J D'Andrea ◽  
Michelle Perugini ◽  
Sonya M Diakiw ◽  
Chung H Kok ◽  
Diana Salerno ◽  
...  

Abstract Abstract 2396 Background: Despite recent advances in understanding the key molecular mechanisms of leukemogenesis, the outcome for patients with Acute Myeloid Leukemia, particularly with a normal karyotype, remains poor. For this large group of patients, genetic alterations in genes such as FLT3, NPM1, CEBPA, IDH1/2, and DNMT3A provide useful prognostic information. However, risk stratification of this group remains only partially resolved and markers of response that can be therapeutically targeted would likely improve outcome for these patients. GADD45A is a tumor suppressor gene that plays cell-type dependent roles in cellular stress coordinating DNA repair and de-methylation, cell cycle arrest, and pro-apoptotic or pro-survival responses (Cancer Ther. 2009;7:268). Methylation of four discrete CpG residues in the proximal promoter of GADD45A is a hallmark of many solid tumours and has been associated with impaired cell stress signalling and reduced drug response (Cancer Res. 2009;69:1527; Oncogene. 2005;24:2705). In AML, GADD45A expression is broadly down-regulated both in normal karyotype and other cytogenetic classes. Down-regulation of GADD45A in AML has been associated with FLT3-ITD (Leukemia. 2009;23:729) and RUNX1 mutations (Satoh et al, Leukemia. 2011;Epub). For those patients without these mutations, the mechanism of GADD45A down-regulation and its prognostic significance remains unknown. We hypothesised that the promoter of GADD45A is methylated in AML and that this methylation is functionally important in patient response. Methods: Using the Sequenom MassARRAY methodology we screened for methylation of four GADD45A promoter CpG dinucleotides (CpG1–4) previously shown to be associated with silencing of GADD45A in breast and prostate cancer, in a retrospective cohort of 222 AML patients collected at diagnosis from the Royal Adelaide Hospital. We then determined association of CpG methylation with outcome and mutation status in our treated patient cohort of 167 patients. In AML cell lines and in primary patient samples we also determined the response to cytotoxic agents in vitro in the presence and absence of demethylating agents. Results: We observed hypermethylation of the CpG1–4 in the proximal promoter of GADD45A in 93 of 222 (42%) of AML patients and in 6 AML cell lines. In the 167 patients treated with standard induction chemotherapy regimes, 61 patients showed methylation of the GADD45A proximal promoter. Of the four CpG residues, methylation of CpG1 was associated with poor overall and event-free survival, in AML overall (Figure 1A) and in normal karyotype AML (Figure 1B). GADD45A CpG1 methylation was significantly associated with IDH1 and IDH2 mutations (p<0.001), but was not associated with FLT3-ITD or other high risk cytogenetic groups. Multivariate analysis (including age, wcc, FLT3-ITD, IDH1/2) revealed that methylation of GADD45A CpG1 is an independent predictor of poor survival in AML, overall (OS; HR 2.17, p=0.006: EFS; HR 2.43, p=0.001), and in normal karyotype AML (OS; HR 2.86, p=0.014: EFS; 5.25, p<0.001). Additionally, treatment of AML cell lines and patient blasts with decitabine (5-Aza-deoxycitidine) resulted in induction of GADD45A mRNA selectively in samples with GADD45A hyper-methylation, and this was associated with increased sensitivity to daunorubicin. Conclusions: DNA methylation of the GADD45A proximal promoter marks a large percentage AML patients, including those with with IDH1/2 mutations, and is an independent predictor of poor outcome, particularly in AML patients with normal karyotype. Our biological data shows that induction of GADD45A mRNA expression with decitabine in methylated samples is associated with increased response to cytotoxic agents. Thus GADD45A proximal promoter methylation represents a new biomarker that may provide prognostic information in the heterogeneous normal karyotype AML group. Given that recent clinical trials are combining Azacitidine with chemotherapy and other agents for induction therapy in AML (Blood;118:1472), this may represent a marker to help define patients that will benefit from this approach. Disclosures: Wei: Celgene: Research Funding.


Blood ◽  
2016 ◽  
Vol 127 (1) ◽  
pp. 29-41 ◽  
Author(s):  
David Grimwade ◽  
Adam Ivey ◽  
Brian J. P. Huntly

Abstract Recent major advances in understanding the molecular basis of acute myeloid leukemia (AML) provide a double-edged sword. Although defining the topology and key features of the molecular landscape are fundamental to development of novel treatment approaches and provide opportunities for greater individualization of therapy, confirmation of the genetic complexity presents a huge challenge to successful translation into routine clinical practice. It is now clear that many genes are recurrently mutated in AML; moreover, individual leukemias harbor multiple mutations and are potentially composed of subclones with differing mutational composition, rendering each patient’s AML genetically unique. In order to make sense of the overwhelming mutational data and capitalize on this clinically, it is important to identify (1) critical AML-defining molecular abnormalities that distinguish biological disease entities; (2) mutations, typically arising in subclones, that may influence prognosis but are unlikely to be ideal therapeutic targets; (3) mutations associated with preleukemic clones; and (4) mutations that have been robustly shown to confer independent prognostic information or are therapeutically relevant. The reward of identifying AML-defining molecular lesions present in all leukemic populations (including subclones) has been exemplified by acute promyelocytic leukemia, where successful targeting of the underlying PML-RARα oncoprotein has eliminated the need for chemotherapy for disease cure. Despite the molecular heterogeneity and recognizing that treatment options for other forms of AML are limited, this review will consider the scope for using novel molecular information to improve diagnosis, identify subsets of patients eligible for targeted therapies, refine outcome prediction, and track treatment response.


Blood ◽  
2011 ◽  
Vol 117 (4) ◽  
pp. 1121-1129 ◽  
Author(s):  
Guido Marcucci ◽  
Krzysztof Mrózek ◽  
Michael D. Radmacher ◽  
Ramiro Garzon ◽  
Clara D. Bloomfield

Abstract Expression of microRNAs, a new class of noncoding RNAs that hybridize to target messenger RNA and regulate their translation into proteins, has been recently demonstrated to be altered in acute myeloid leukemia (AML). Distinctive patterns of increased expression and/or silencing of multiple microRNAs (microRNA signatures) have been associated with specific cytogenetic and molecular subsets of AML. Changes in the expression of several microRNAs altered in AML have been shown to have functional relevance in leukemogenesis, with some microRNAs acting as oncogenes and others as tumor suppressors. Both microRNA signatures and a single microRNA (ie, miR-181a) have been shown to supply prognostic information complementing that gained from cytogenetics, gene mutations, and altered gene expression. Moreover, it has been demonstrated experimentally that antileukemic effects can be achieved by modulating microRNA expression by pharmacologic agents and/or increasing low endogenous levels of microRNAs with tumor suppressor function by synthetic microRNA oligonucleotides, or down-regulating high endogenous levels of leukemogenic microRNAs by antisense oligonucleotides (antagomirs). Therefore, it is reasonable to predict the development of novel microRNA-based therapeutic approaches in AML. We review herein results of current studies analyzing changes of microRNA expression in AML and discuss their potential biologic, diagnostic, and prognostic relevance.


Sign in / Sign up

Export Citation Format

Share Document