Variation in physiological health of diademed sifakas across intact and fragmented forest at Tsinjoarivo, eastern Madagascar

2010 ◽  
Vol 72 (11) ◽  
pp. 1013-1025 ◽  
Author(s):  
Mitchell T. Irwin ◽  
Randall E. Junge ◽  
Jean-Luc Raharison ◽  
Karen E. Samonds

2021 ◽  
Author(s):  
María Laura Bernaschini ◽  
María Rosa Rossetti ◽  
Graciela Valladares ◽  
Adriana Salvo


2021 ◽  
Vol 193 (4) ◽  
Author(s):  
Stefan Erasmi ◽  
Michael Klinge ◽  
Choimaa Dulamsuren ◽  
Florian Schneider ◽  
Markus Hauck

AbstractThe monitoring of the spatial and temporal dynamics of vegetation productivity is important in the context of carbon sequestration by terrestrial ecosystems from the atmosphere. The accessibility of the full archive of medium-resolution earth observation data for multiple decades dramatically improved the potential of remote sensing to support global climate change and terrestrial carbon cycle studies. We investigated a dense time series of multi-sensor Landsat Normalized Difference Vegetation Index (NDVI) data at the southern fringe of the boreal forests in the Mongolian forest-steppe with regard to the ability to capture the annual variability in radial stemwood increment and thus forest productivity. Forest productivity was assessed from dendrochronological series of Siberian larch (Larix sibirica) from 15 plots in forest patches of different ages and stand sizes. The results revealed a strong correlation between the maximum growing season NDVI of forest sites and tree ring width over an observation period of 20 years. This relationship was independent of the forest stand size and of the landscape’s forest-to-grassland ratio. We conclude from the consistent findings of our case study that the maximum growing season NDVI can be used for retrospective modelling of forest productivity over larger areas. The usefulness of grassland NDVI as a proxy for forest NDVI to monitor forest productivity in semi-arid areas could only partially be confirmed. Spatial and temporal inconsistencies between forest and grassland NDVI are a consequence of different physiological and ecological vegetation properties. Due to coarse spatial resolution of available satellite data, previous studies were not able to account for small-scaled land-cover patches like fragmented forest in the forest-steppe. Landsat satellite-time series were able to separate those effects and thus may contribute to a better understanding of the impact of global climate change on natural ecosystems.



2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Gloria Fackelmann ◽  
Mark A. F. Gillingham ◽  
Julian Schmid ◽  
Alexander Christoph Heni ◽  
Kerstin Wilhelm ◽  
...  

AbstractIn the Anthropocene, humans, domesticated animals, wildlife, and their environments are interconnected, especially as humans advance further into wildlife habitats. Wildlife gut microbiomes play a vital role in host health. Changes to wildlife gut microbiomes due to anthropogenic disturbances, such as habitat fragmentation, can disrupt natural gut microbiota homeostasis and make animals vulnerable to infections that may become zoonotic. However, it remains unclear whether the disruption to wildlife gut microbiomes is caused by habitat fragmentation per se or the combination of habitat fragmentation with additional anthropogenic disturbances, such as contact with humans, domesticated animals, invasive species, and their pathogens. Here, we show that habitat fragmentation per se does not impact the gut microbiome of a generalist rodent species native to Central America, Tome’s spiny rat Proechimys semispinosus, but additional anthropogenic disturbances do. Indeed, compared to protected continuous and fragmented forest landscapes that are largely untouched by other human activities, the gut microbiomes of spiny rats inhabiting human-disturbed fragmented landscapes revealed a reduced alpha diversity and a shifted and more dispersed beta diversity. Their microbiomes contained more taxa associated with domesticated animals and their potential pathogens, suggesting a shift in potential metagenome functions. On the one hand, the compositional shift could indicate a degree of gut microbial adaption known as metagenomic plasticity. On the other hand, the greater variation in community structure and reduced alpha diversity may signal a decline in beneficial microbial functions and illustrate that gut adaption may not catch up with anthropogenic disturbances, even in a generalist species with large phenotypic plasticity, with potentially harmful consequences to both wildlife and human health.



2016 ◽  
pp. rtw067
Author(s):  
Brad J. Farmilo ◽  
John W. Morgan ◽  
Dale G. Nimmo


Data in Brief ◽  
2018 ◽  
Vol 21 ◽  
pp. 2089-2094 ◽  
Author(s):  
Siti Nurfatiha Najihah Fakhrul-Hatta ◽  
Bryan Raveen Nelson ◽  
Nur Juliani Shafie ◽  
Muhamad Aidil Zahidin ◽  
Mohd. Tajuddin Abdullah


2008 ◽  
Vol 38 (8) ◽  
pp. 2128-2137 ◽  
Author(s):  
Kevin M. Potter ◽  
John Frampton ◽  
Sedley A. Josserand ◽  
C. Dana Nelson

The island-like populations of Fraser fir ( Abies fraseri (Pursh) Poir.) have been isolated since the end of the late-Wisconsinian glaciation on the highest peaks of the Southern Appalachian Mountains and therefore offer an opportunity to investigate the genetic dynamics of a long-fragmented forest tree species. An analysis of eight microsatellite markers isolated from Fraser fir found that the species was out of Hardy–Weinberg equilibrium, with a significant deficiency of heterozygosity and a high degree of inbreeding (FIS = 0.223) relative to other conifers, perhaps associated in part with the young life stage of the trees included in the analysis. The analysis detected a significant but small amount of genetic differentiation among Fraser fir populations (FST = 0.004) and revealed that the geographical and latitudinal distances between populations, but not population area, were significantly correlated with their pairwise genetic differences. Both gene flow and postglacial migration history may have influenced the genetic architecture of the species. The results will be useful in the genetic conservation of Fraser fir, a species experiencing severe mortality following infestation by an exotic insect.



2000 ◽  
Vol 27 (1) ◽  
pp. 39 ◽  
Author(s):  
Stephen M. Jackson

Trapping data of the mahogany glider, Petaurus gracilis, and the sugar glider, Petaurus breviceps, in sympatry, in north Queensland, were analysed with vegetation variables to determine the habitat relationships of these two species. The study area contained a trapping grid (80 traps) within an area of continuous forest and trapping transects within an adjacent area of fragmented forest (44 traps). The mahogany glider was trapped more often at 43 of the 124 locations (38 in the continuous and 5 in the fragmented forest), with the sugar glider dominant at 46 locations (18 in the continuous forest and 28 in the fragmented forest). The remaining 27 trap locations where gliders were caught did not favour either species. Eight trap locations within riparian rainforest had no captures of either species. The presence of mahogany gliders was significantly correlated with the presence of Corymbia clarksoniana, Eucalyptus platyphylla, the absence of Corymbia intermedia and Acacia mangium, and a small mid and upper canopy cover. In contrast, the presence of sugar gliders was most correlated with a large number of stems. When the presence of the mahogany glider was compared with that of the sugar glider with respect to various habitat variables for the entire study area, the mahogany glider was most associated with the presence of C. clarksoniana, Eucalyptus pellita, Lophostemon suaveolens, Melaleuca dealbata and a reduced lower and upper canopy. In contrast, the sugar glider was most associated with C. intermedia, A. mangium, a large number of potential food species, rainforest species and a dense mid and upper canopy cover.



Sign in / Sign up

Export Citation Format

Share Document