Usefulness of imaging studies for diagnosing and localizing cerebrospinal fluid rhinorrhea: A systematic review and meta‐analysis

Author(s):  
Do Hyun Kim ◽  
Sung Won Kim ◽  
So‐Hyun Kim ◽  
Jae Hoon Jung ◽  
Se Hwan Hwang
Author(s):  
Emma M. H. Slot ◽  
Kirsten M. van Baarsen ◽  
Eelco W. Hoving ◽  
Nicolaas P. A. Zuithoff ◽  
Tristan P. C van Doormaal

Abstract Background Cerebrospinal fluid (CSF) leakage is a common complication after neurosurgical intervention. It is associated with substantial morbidity and increased healthcare costs. The current systematic review and meta-analysis aim to quantify the incidence of cerebrospinal fluid leakage in the pediatric population and identify its risk factors. Methods The authors followed the PRISMA guidelines. The Embase, PubMed, and Cochrane database were searched for studies reporting CSF leakage after intradural cranial surgery in patients up to 18 years old. Meta-analysis of incidences was performed using a generalized linear mixed model. Results Twenty-six articles were included in this systematic review. Data were retrieved of 2929 patients who underwent a total of 3034 intradural cranial surgeries. Surprisingly, only four of the included articles reported their definition of CSF leakage. The overall CSF leakage rate was 4.4% (95% CI 2.6 to 7.3%). The odds of CSF leakage were significantly greater for craniectomy as opposed to craniotomy (OR 4.7, 95% CI 1.7 to 13.4) and infratentorial as opposed to supratentorial surgery (OR 5.9, 95% CI 1.7 to 20.6). The odds of CSF leakage were significantly lower for duraplasty use versus no duraplasty (OR 0.41 95% CI 0.2 to 0.9). Conclusion The overall CSF leakage rate after intradural cranial surgery in the pediatric population is 4.4%. Risk factors are craniectomy and infratentorial surgery. Duraplasty use is negatively associated with CSF leak. We suggest defining a CSF leak as “leakage of CSF through the skin,” as an unambiguous definition is fundamental for future research.


2021 ◽  
Author(s):  
Victor Schwartz Hvingelby ◽  
Carsten Bjarkam ◽  
Frantz Rom Poulsen ◽  
Tiit Illimar Mathiesen ◽  
Morten Thingemann Bøtker ◽  
...  

Author(s):  
Fernanda Nogueira-Reis ◽  
Larissa de Oliveira Reis ◽  
Rocharles Cavalcante Fontenele ◽  
Deborah Queiroz Freitas ◽  
Cinthia Pereira Machado Tabchoury

2015 ◽  
Vol 40 (1) ◽  
pp. E1-E22 ◽  
Author(s):  
Rebekah Wigton ◽  
Jocham Radua ◽  
Paul Allen ◽  
Bruno Averbeck ◽  
Andreas Meyer-Lindenberg ◽  
...  

2018 ◽  
Vol 24 (6) ◽  
pp. 869-887 ◽  
Author(s):  
Sonja Orlovska-Waast ◽  
Ole Köhler-Forsberg ◽  
Sophie Wiben Brix ◽  
Merete Nordentoft ◽  
Daniel Kondziella ◽  
...  

2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii26-ii26
Author(s):  
Motomasa Furuse ◽  
Naosuke Nonoguchi ◽  
Kei Yamada ◽  
Tohru Shiga ◽  
Jean-Damien Combes ◽  
...  

Abstract BACKGROUND It is challenging to discriminate radiation necrosis from tumor progression, especially in malignant glioma. Therefore many radiological imaging studies have been reported. In this study, we performed a systematic review of radiological diagnosis for radiation necrosis and analyzed the best radiological imaging for malignant glioma. METHODS We divided diagnostic approaches into two categories as follows-CT and MRI (conventional radiological imaging studies), and SPECT and PET (nuclear medicine studies). Our librarians conducted a comprehensive systematic search on Pub Med, Cochrane Library, and the Japan Medical Abstract Society up to March 2015. The searching keywords included radiation necrosis, recurrence, imaging modalities such as MRI, diagnosis, and differential. In a meta-analysis, diagnostic odds ratio (DOR) was calculated. A subanalysis was performed, dividing into tumor types, gliomas and metastatic brain tumors. RESULTS Of 188 and 239 records extracted from the database, 20 and 26 studies were included in the meta-analysis after exclusion of case reports and studies with incompatible content and insufficient information. Gd-enhanced MRI exhibited the lowest sensitivity (63%) and DOR (2.2). On the other hand, combined multiple imaging studies including MRS and perfusion image displayed the highest sensitivity (96%) and DOR (5.9). In the subanalysis for glioma, Gd-enhanced MRI and 18F-FDG-PET revealed low DORs (1.7 and 2.3). Conversely, 18F-FET-PET and combined multiple imaging studies showed high DORs (6.8 and 5.9). CONCLUSIONS Gd-enhanced MRI had low diagnostic ability for differentiation of radiation necrosis. In glioma patients, 18F-FDG-PET was not useful to discriminate radiation necrosis from tumor progression. Combined multiparametric imaging including lesional metabolism and blood flow could enhance diagnostic accuracy and be useful to differentiate radiation necrosis from tumor progression even in glioma patients.


Sign in / Sign up

Export Citation Format

Share Document