scholarly journals Transfer learning with related tau PET radioligands improves 3D neural network performance

2021 ◽  
Vol 17 (S1) ◽  
Author(s):  
James Zou ◽  
David Park ◽  
Aubrey S Johnson ◽  
Zeljko Tomljanovic ◽  
Davangere P. Devanand ◽  
...  
Author(s):  
Telmo Amaral ◽  
Luís M. Silva ◽  
Luís A. Alexandre ◽  
Chetak Kandaswamy ◽  
Joaquim Marques de Sá ◽  
...  

Author(s):  
Jonathan Boigne ◽  
Biman Liyanage ◽  
Ted Östrem

We propose a novel transfer learning method for speech emotion recognition allowing us to obtain promising results when only few training data is available. With as low as 125 examples per emotion class, we were able to reach a higher accuracy than a strong baseline trained on 8 times more data. Our method leverages knowledge contained in pre-trained speech representations extracted from models trained on a more general self-supervised task which doesn’t require human annotations, such as the wav2vec model. We provide detailed insights on the benefits of our approach by varying the training data size, which can help labeling teams to work more efficiently. We compare performance with other popular methods on the IEMOCAP dataset, a well-benchmarked dataset among the Speech Emotion Recognition (SER) research community. Furthermore, we demonstrate that results can be greatly improved by combining acoustic and linguistic knowledge from transfer learning. We align acoustic pre-trained representations with semantic representations from the BERT model through an attention-based recurrent neural network. Performance improves significantly when combining both modalities and scales with the amount of data. When trained on the full IEMOCAP dataset, we reach a new state-of-the-art of 73.9% unweighted accuracy (UA).


2019 ◽  
Author(s):  
Qi Yuan ◽  
Alejandro Santana-Bonilla ◽  
Martijn Zwijnenburg ◽  
Kim Jelfs

<p>The chemical space for novel electronic donor-acceptor oligomers with targeted properties was explored using deep generative models and transfer learning. A General Recurrent Neural Network model was trained from the ChEMBL database to generate chemically valid SMILES strings. The parameters of the General Recurrent Neural Network were fine-tuned via transfer learning using the electronic donor-acceptor database from the Computational Material Repository to generate novel donor-acceptor oligomers. Six different transfer learning models were developed with different subsets of the donor-acceptor database as training sets. We concluded that electronic properties such as HOMO-LUMO gaps and dipole moments of the training sets can be learned using the SMILES representation with deep generative models, and that the chemical space of the training sets can be efficiently explored. This approach identified approximately 1700 new molecules that have promising electronic properties (HOMO-LUMO gap <2 eV and dipole moment <2 Debye), 6-times more than in the original database. Amongst the molecular transformations, the deep generative model has learned how to produce novel molecules by trading off between selected atomic substitutions (such as halogenation or methylation) and molecular features such as the spatial extension of the oligomer. The method can be extended as a plausible source of new chemical combinations to effectively explore the chemical space for targeted properties.</p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Young-Gon Kim ◽  
Sungchul Kim ◽  
Cristina Eunbee Cho ◽  
In Hye Song ◽  
Hee Jin Lee ◽  
...  

AbstractFast and accurate confirmation of metastasis on the frozen tissue section of intraoperative sentinel lymph node biopsy is an essential tool for critical surgical decisions. However, accurate diagnosis by pathologists is difficult within the time limitations. Training a robust and accurate deep learning model is also difficult owing to the limited number of frozen datasets with high quality labels. To overcome these issues, we validated the effectiveness of transfer learning from CAMELYON16 to improve performance of the convolutional neural network (CNN)-based classification model on our frozen dataset (N = 297) from Asan Medical Center (AMC). Among the 297 whole slide images (WSIs), 157 and 40 WSIs were used to train deep learning models with different dataset ratios at 2, 4, 8, 20, 40, and 100%. The remaining, i.e., 100 WSIs, were used to validate model performance in terms of patch- and slide-level classification. An additional 228 WSIs from Seoul National University Bundang Hospital (SNUBH) were used as an external validation. Three initial weights, i.e., scratch-based (random initialization), ImageNet-based, and CAMELYON16-based models were used to validate their effectiveness in external validation. In the patch-level classification results on the AMC dataset, CAMELYON16-based models trained with a small dataset (up to 40%, i.e., 62 WSIs) showed a significantly higher area under the curve (AUC) of 0.929 than those of the scratch- and ImageNet-based models at 0.897 and 0.919, respectively, while CAMELYON16-based and ImageNet-based models trained with 100% of the training dataset showed comparable AUCs at 0.944 and 0.943, respectively. For the external validation, CAMELYON16-based models showed higher AUCs than those of the scratch- and ImageNet-based models. Model performance for slide feasibility of the transfer learning to enhance model performance was validated in the case of frozen section datasets with limited numbers.


Sign in / Sign up

Export Citation Format

Share Document