Nucleus tractus solitarius lesions elevate pulmonary arterial pressure and lymph flow

1985 ◽  
Vol 17 (6) ◽  
pp. 565-569 ◽  
Author(s):  
Teresa M. Darragh ◽  
Roger P. Simon
1995 ◽  
Vol 269 (4) ◽  
pp. R943-R947
Author(s):  
Y. Kikuchi ◽  
H. Nakazawa ◽  
D. L. Traber

We developed a chronic lung fistula that drains only the left lung, allowing for evaluation of injury in a single lung. To remove lymph drainage from the right lung into the caudal mediastinal lymph node, the right lower pulmonary ligament was severed. Pneumatic occluders were placed on the left pulmonary arteries and veins. To ensure that lymph drained from only the left lung, we increased the right pulmonary arterial pressure (RPAP) from 21.2 +/- 0.5 to 36.5 +/- 0.6 mmHg. The left pulmonary arterial pressure (LPAP) was kept at wedge pressure level for 1 h by inflating pneumatic occluders. Lymph flow from the left lung fistula was stable during this occlusion. Six hours after recovery was increased the LPAP from a baseline level of 19.1 +/- 1.0 to 36.4 +/- 0.9 mmHg and the RPAP from 21.2 +/- 0.5 to 38.0 +/- 0.8 mmHg for 2 h by inflating the pneumatic occluders on the left and right pulmonary veins. Lymph flow increased from 5.3 +/- 1.0 to 28.0 +/- 2.9 ml/h. Reflection coefficient was calculated at 0.80 +/- 0.02.


1994 ◽  
Vol 77 (2) ◽  
pp. 888-895 ◽  
Author(s):  
S. P. Janssens ◽  
S. W. Musto ◽  
W. G. Hutchison ◽  
C. Spence ◽  
M. Witten ◽  
...  

Inhalation of smoke containing acrolein, the most common toxin in urban fires after carbon monoxide, causes vascular injury with non-cardiogenic pulmonary edema containing potentially edematogenic eicosanoids such as thromboxane (Tx) B2, leukotriene (LT) B4, and the sulfidopeptide LTs (LTC4, LTD4, and LTE4). To determine which eicosanoids are important in the acute lung injury, we pretreated sheep with BW-755C (a combined cyclooxygenase and lipoxygenase inhibitor), U-63557A (a specific Tx synthetase inhibitor), or indomethacin (a cyclooxygenase inhibitor) before a 10-min exposure to a synthetic smoke containing carbon particles (4 microns) with acrolein and compared the results with those from control sheep that received only carbon smoke. Acrolein smoke induced a fall in arterial PO2 and rises in peak inspiratory pressure, main pulmonary arterial pressure, pulmonary vascular resistance, lung lymph flow, and the blood-free wet-to-dry weight ratio. BW-755C delayed the rise in peak inspiratory pressure and prevented the fall in arterial PO2, the rise in lymph flow, and the rise in wet-to-dry weight ratio. Neither indomethacin nor U-63557A prevented the increase in lymph flow or wet-to-dry weight ratio, although they did blunt and delay the rise in airway pressure and did prevent the rises in pulmonary arterial pressure and pulmonary vascular resistance. Thus, cyclooxygenase products, probably Tx, are responsible for the pulmonary hypertension after acrolein smoke and to some extent for the increased airway resistance but not the pulmonary edema. Prevention of high-permeability pulmonary edema after smoke with BW-755C suggests that LTB4, may be etiologic, as previous work has eliminated LTC4, LTD4, and LTE4.


1985 ◽  
Vol 58 (3) ◽  
pp. 812-818 ◽  
Author(s):  
T. N. Hansen ◽  
A. L. Le Blanc ◽  
A. L. Gest

To assess the effects of alveolar hypoxia and angiotensin II infusion on distribution of blood flow to the lung we performed perfusion lung scans on anesthetized mechanically ventilated lambs. Scans were obtained by injecting 1–2 mCi of technetium-labeled albumin macroaggregates as the lambs were ventilated with air, with 10–14% O2 in N2, or with air while receiving angiotensin II intravenously. We found that both alveolar hypoxia and infusion of angiotensin II increased pulmonary vascular resistance and redistributed blood flow from the mid and lower lung regions towards the upper posterior region of the lung. We assessed the effects of angiotensin II infusion on filtration pressure in six lambs by measuring the rate of lung lymph flow and the protein concentration of samples of lung lymph. We found that angiotensin II infusion increased pulmonary arterial pressure 50%, lung lymph flow 90%, and decreased the concentration of protein in lymph relative to plasma. These results are identical to those seen when filtration pressure increases during alveolar hypoxia. We conclude that alveolar hypoxia and angiotensin II infusion both increase fluid filtration in the lung by increasing filtration pressure. The increase in filtration pressure may be the result of a redistribution of blood flow in the lung with relative overperfusion of vessels in some areas and transmission of the elevated pulmonary arterial pressure to fluid-exchanging sites in those vessels.


1989 ◽  
Vol 66 (3) ◽  
pp. 1287-1296 ◽  
Author(s):  
D. B. Pearse ◽  
R. G. Brower ◽  
N. F. Adkinson ◽  
J. T. Sylvester

Perfusion of isolated sheep lungs with blood causes spontaneous edema and hypertension preceded by decreases in perfusate concentrations of leukocytes (WBC) and platelets (PLT). To determine whether these decreases were caused by pulmonary sequestration, we continuously measured blood flow and collected pulmonary arterial and left atrial blood for cell concentration measurements in six lungs early in perfusion. Significant sequestration occurred in the lung, but not in the extracorporeal circuit. To determine the contribution of these cells to spontaneous injury in this model, lungs perfused in situ with a constant flow (100 ml.kg-1.min-1) of homologous leukopenic (WBC = 540 mm-3, n = 8) or thrombocytopenic blood (PLT = 10,000 mm-3, n = 6) were compared with control lungs perfused with untreated homologous blood (WBC = 5,320, PLT = 422,000, n = 8). Perfusion of control lungs caused a rapid fall in WBC and PLT followed by transient increases in pulmonary arterial pressure, lung lymph flow, and perfusate concentrations of 6-ketoprostaglandin F1 alpha and thromboxane B2. The negative value of reservoir weight (delta W) was measured as an index of fluid entry into the lung extravascular space during perfusion. delta W increased rapidly for 60 min and then more gradually to 242 g at 180 min. This was accompanied by a rise in the lymph-to-plasma oncotic pressure ratio (pi L/pi P). Relative to control, leukopenic perfusion decreased the ratio of wet weight to dry weight, the intra- plus extravascular blood weight, and the incidence of bloody lymph. Thrombocytopenic perfusion increased lung lymph flow and the rate of delta W, decreased pi L/pi P and perfusate thromboxane B2, and delayed the peak pulmonary arterial pressure. These results suggest that perfusate leukocytes sequestered in the lung and contributed to hemorrhage but were not necessary for hypertension and edema. Platelets were an important source of thromboxane but protected against edema by an unknown mechanism.


1986 ◽  
Vol 61 (5) ◽  
pp. 1830-1835 ◽  
Author(s):  
W. Mitzner ◽  
J. T. Sylvester

To study the relationship between lung weight and lymph flow, we used an in situ, isolated sheep lung preparation that allowed these two variables to be measured simultaneously. All lungs were perfused for 4.5 h at a constant rate of 100 ml X min-1 X kg-1. In control lungs, the left atrial pressure (Pla) was kept at atmospheric pressure. In experimental lungs, Pla was kept atmospheric except for a 50-min elevation to 18 mmHg midway through the perfusion. During this period of left atrial hypertension, pulmonary arterial pressure rose from 18 to 31 mmHg, lymph flow rose from 3 to 12 ml/h, and the lymph-to-plasma oncotic pressure ratio (pi L/pi P) fell from 0.7 to 0.48. After left atrial pressure was returned to control, pulmonary arterial pressure, lymph flow, and pi L/pi P all returned to control levels. The rate of weight gain after the return of left atrial pressure to control was also the same as that in the control group. However, during the period of left atrial hypertension 135 ml of fluid were filtered into the lung, and this large increase in lung weight remained after the pressure was lowered. The presence of this substantial excess lung water despite control values for vascular pressures, lymph flow, rate of weight gain, and pi L/pi P suggests that the absolute amount of lung water has little influence on the dynamic aspects of lung fluid balance. These results are consistent with a two-compartment model of the interstitial space, where only one of the compartments is readily drained by the lymphatics.


2001 ◽  
Vol 90 (1) ◽  
pp. 261-268 ◽  
Author(s):  
Leonardo C. Clavijo ◽  
Mary B. Carter ◽  
Paul J. Matheson ◽  
Mark A. Wilson ◽  
William B. Wead ◽  
...  

In vivo pulmonary arterial catheterization was used to determine the mechanism by which platelet-activating factor (PAF) produces pulmonary edema in rats. PAF induces pulmonary edema by increasing pulmonary microvascular permeability (PMP) without changing the pulmonary pressure gradient. Rats were cannulated for measurement of pulmonary arterial pressure (Ppa) and mean arterial pressure. PMP was determined by using either in vivo fluorescent videomicroscopy or the ex vivo Evans blue dye technique. WEB 2086 was administered intravenously (IV) to antagonize specific PAF effects. Three experiments were performed: 1) IV PAF, 2) topical PAF, and 3) Escherichia coli bacteremia. IV PAF induced systemic hypotension with a decrease in Ppa. PMP increased after IV PAF in a dose-related manner. Topical PAF increased PMP but decreased Ppa only at high doses. Both PMP (88 ± 5%) and Ppa (50 ± 3%) increased during E. coli bacteremia. PAF-receptor blockade prevents changes in Ppa and PMP after both topical PAF and E. coli bacteremia. PAF, which has been shown to mediate pulmonary edema in prior studies, appears to act in the lung by primarily increasing microvascular permeability. The presence of PAF might be prerequisite for pulmonary vascular constriction during gram-negative bacteremia.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 204-205
Author(s):  
Kathryn R Heffernan ◽  
Scott Speidel ◽  
Milt Thomas ◽  
Mark Enns ◽  
Tim Holt

Abstract Pulmonary hypertension (PH) can lead to premature mortality in fed cattle and is often called Feedlot Heart Disease (FHD). To date, pulmonary arterial pressure (PAP) has been the only indicator trait of PH that has been evaluated. The objective of this study was to evaluate relationships between heart score (using heart score as a phenotype for PH) and PAP, carcass, and feed efficiency traits in fattening Angus steers. Our hypothesis was that feed efficiency and carcass traits, along with PAP, would demonstrate a strong relationship with heart score. Feed efficiency, carcass, PAP and heart score data from 89 Black Angus steers from Colorado State University Beef Improvement Center were collected and used for this study. Evaluations were performed using a multiple linear regression model, which included heart score as a categorical fixed effect and age as a continuous fixed effect. Least Square Means, pairwise comparisons, and ANOVA tables were constructed per trait. PAP (P < 0.001) showed an important relationship to heart score and average dry matter (P < 0.10) intake approached importance to heart score. In general, feed efficiency and carcass traits decreased as heart score increased, but PAP was the only trait with a strong relationship to heart score (P < 0.05). This led us to reject our hypothesis.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 197-197
Author(s):  
Emma A Briggs ◽  
Scott Speidel ◽  
Mark Enns ◽  
Milt Thomas ◽  
Tim Holt

Abstract The objective of the study was to evaluate if a genetic relationship exists between pulmonary arterial pressure (PAP) measured at high elevation with traits associated with moderate elevation feedlot and carcass traits. For this analysis, PAP, feed intake, and carcass data were taken from 6,898, 558, and 1,627 animals, respectively. At an elevation of 2,115 m, PAP measurements were collected, then a selective group of steers was relocated to a moderate elevation feedlot (1,500 m) where feed intake data were collected. Genetic relationships were evaluated with 5-trait animal models using REML statistical analysis. For all traits in the analysis, fixed effects and contemporary groups were assigned as well as a direct genetic random effect. For weaning weight, a maternal permanent environmental effect was applied in the analysis. For PAP, the heritability estimate was 0.29 ± 0.03. Genetic correlations between PAP with feedlot traits was positive, with estimates of 0.34 ± 0.20 (average dry matter intake) and 0.05 ± 17 (average daily gain). The strongest genetic correlation between PAP and carcass performance traits were those of rib eye area (-0.30 ± 0.12) and calculated yield grade (0.29 ± 0.13). Genetic correlations between PAP and marbling score, back fat, or hot carcass weight were 0.00 ± 0.13, -0.07 ± 0.13, and 0.14 ± 0.10, respectively. These results suggest a favorable genetic relationship exists between PAP with feedlot and carcass traits.


Sign in / Sign up

Export Citation Format

Share Document