scholarly journals TIRF Microscopy‐Based Monitoring of Drug Permeation Across a Lipid Membrane Supported on Mesoporous Silica

2020 ◽  
Author(s):  
Paul Joyce ◽  
Silver Jõemetsa ◽  
Simon Isaksson ◽  
Shakhawath Hossain ◽  
Per Larsson ◽  
...  
Author(s):  
Paul Joyce ◽  
Silver Jõemetsa ◽  
Simon Isaksson ◽  
Shakhawath Hossain ◽  
Per Larsson ◽  
...  

2020 ◽  
Vol 295 (45) ◽  
pp. 15196-15197
Author(s):  
Solène Denolly ◽  
François-Loïc Cosset

The penetration of enveloped viruses into target cells requires the fusion of the lipid envelope of their virions with the host lipid membrane though a stepwise and highly sophisticated process. However, the intermediate steps in this process have seldom been visualized due to their rarity and rapidity. Here, using cryo-electron tomography, TIRF microscopy, and cell membrane–derived vesicles called blebs, Ward et al. visualize intermediates of the HIV-cell membrane fusion process and demonstrate how Serinc proteins prevent full fusion by interfering with this process.


2014 ◽  
Vol 6 (3) ◽  
pp. 1675-1681 ◽  
Author(s):  
Robert A. Roggers ◽  
Madhura Joglekar ◽  
Justin S. Valenstein ◽  
Brian G. Trewyn

Nanoscale ◽  
2020 ◽  
Vol 12 (17) ◽  
pp. 9517-9523 ◽  
Author(s):  
Huizhen Fan ◽  
Yu Fan ◽  
Wenna Du ◽  
Rui Cai ◽  
Xinshuang Gao ◽  
...  

ICG forms aggregates in positively charged mesoporous silica, which show an enhanced type I photoreaction pathway.


TBEV-particles are assembled in an immature, noninfectious form in the endoplasmic reticulum by the envelopment of the viral core (containing the viral RNA) by a lipid membrane associated with two viral proteins, prM and E. Immature particles are transported through the cellular exocytic pathway and conformational changes induced by acidic pH in the trans-Golgi network allow the proteolytic cleavage of prM by furin, a cellular protease, resulting in the release of mature and infectious TBE-virions. The E protein controls cell entry by mediating attachment to as yet ill-defined receptors as well as by low-pH-triggered fusion of the viral and endosomal membrane after uptake by receptor-mediated endocytosis. Because of its key functions in cell entry, the E protein is the primary target of virus neutralizing antibodies, which inhibit these functions by different mechanisms. Although all flavivirus E proteins have a similar overall structure, divergence at the amino acid sequence level is up to 60 percent (e.g. between TBE and dengue viruses), and therefore cross-neutralization as well as (some degree of) cross-protection are limited to relatively closely related flaviviruses, such as those constituting the tick-borne encephalitis serocomplex.


2003 ◽  
Vol 775 ◽  
Author(s):  
G.V.Rama Rao ◽  
Qiang Fu ◽  
Linnea K. Ista ◽  
Huifang Xu ◽  
S. Balamurugan ◽  
...  

AbstractThis study details development of hybrid mesoporous materials in which molecular transport through mesopores can be precisely controlled and reversibly modulated. Mesoporous silica materials formed by surfactant templating were modified by surface initiated atom transfer radical polymerization of poly(N-isopropyl acrylamide) (PNIPAAm) a stimuli responsive polymer (SRP) within the porous network. Thermo gravimetric analysis and FTIR spectroscopy were used to confirm the presence of PNIPAAm on the silica surface. Nitrogen porosimetry, transmission electron microscopy and X-ray diffraction analyses confirmed that polymerization occurred uniformly within the porous network. Uptake and release of fluorescent dyes from the particles was monitored by spectrofluorimetry and scanning laser confocal microscopy. Results suggest that the presence of PNIPAAm, a SRP, in the porous network can be used to modulate the transport of aqueous solutes. At low temperature, (e.g., room temperature) the PNIPAAm is hydrated and extended and inhibits transport of analytes; at higher temperatures (e.g., 50°C) it is hydrophobic and is collapsed within the pore network, thus allowing solute diffusion into or out of the mesoporous silica. The transition form hydrophilic to hydrophobic state on polymer grafted mesoporous membranes was determined by contact angle measurements. This work has implications for the development of materials for the selective control of transport of molecular solutes in a variety of applications.


2019 ◽  
Author(s):  
Jiajun Wang ◽  
Rémi Terrasse ◽  
Jayesh Arun Bafna ◽  
Lorraine Benier ◽  
Mathias Winterhalter

Multi-drug resistance in Gram-negative bacteria is often associated with low permeability of the outer membrane. To investigate the role of membrane channels in the uptake of antibiotics, we extract, purify and reconstitute them into artificial planar membranes. To avoid this time-consuming procedure, here we show a robust approach using fusion of native outer membrane vesicles (OMV) into planar lipid bilayer which moreover allows also to some extend the characterization of membrane protein channels in their native environment. Two major membrane channels from <i>Escherichia coli</i>, OmpF and OmpC, were overexpressed from the host and the corresponding OMVs were collected. Each OMV fusion revealed surprisingly single or only few channel activities. The asymmetry of the OMV´s translates after fusion into the lipid membrane with the LPS dominantly present at the side of OMV addition. Compared to conventional reconstitution methods, the channels fused from OMVs containing LPS have similar conductance but a much broader distribution. The addition of Enrofloxacin on the LPS side yields somewhat higher association (<i>k<sub>on</sub></i>) and lower dissociation (<i>k<sub>off</sub></i>) rates compared to LPS-free reconstitution. We conclude that using outer membrane vesicles is a fast and easy approach for functional and structural studies of membrane channels in the native membrane.


Sign in / Sign up

Export Citation Format

Share Document