scholarly journals Influence of Backbone Curvature on the Organic Electrochemical Transistor Performance of Glycolated Donor‐Acceptor Conjugated Polymers

2021 ◽  
Author(s):  
Bowen Ding ◽  
Gunwoo Kim ◽  
Youngseok Kim ◽  
Flurin D. Eisner ◽  
Edgar Gutiérrez-Fernández ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2486
Author(s):  
Dexun Xie ◽  
Jing Xiao ◽  
Quanwei Li ◽  
Tongchao Liu ◽  
Jinjia Xu ◽  
...  

Conjugated polymers with narrower bandgaps usually induce higher carrier mobility, which is vital for the improved thermoelectric performance of polymeric materials. Herein, two indacenodithiophene (IDT) based donor–acceptor (D-A) conjugated polymers (PIDT-BBT and PIDTT-BBT) were designed and synthesized, both of which exhibited low-bandgaps. PIDTT-BBT showed a more planar backbone and carrier mobility that was two orders of magnitude higher (2.74 × 10−2 cm2V−1s−1) than that of PIDT-BBT (4.52 × 10−4 cm2V−1s−1). Both exhibited excellent thermoelectric performance after doping with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, where PIDTT-BBT exhibited a larger conductivity (0.181 S cm−1) and a higher power factor (1.861 μW m−1 K−2) due to its higher carrier mobility. The maximum power factor of PIDTT-BBT reached 4.04 μW m−1 K−2 at 382 K. It is believed that conjugated polymers with a low bandgap are promising in the field of organic thermoelectric materials.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 393
Author(s):  
Ja Eun Lee ◽  
Yoon Kim ◽  
Yang Ho Na ◽  
Nam Seob Baek ◽  
Jae Woong Jung ◽  
...  

We synthesized medium-band-gap donor-acceptor (D-A) -type conjugated polymers (PBTZCZ-L and PBTZCZ-H) consisting of a benzotriazole building block as an acceptor and a carbazole unit as a donor. In comparison with the polymers, a small conjugated molecule (BTZCZ-2) was developed, and its structural, thermal, optical, and photovoltaic properties were investigated. The power conversion efficiency (PCE) of the BTZCZ-2-based solar cell devices was less than 0.5%, considerably lower than those of polymer-based devices with conventional device structures. However, inverted solar cell devices configured with glass/ITO/ZnO:PEIE/BTZCZ-2:PC71BM/MoO3/Ag showed a tremendously improved efficiency (PCE: 5.05%, Jsc: 9.95 mA/cm2, Voc: 0.89 V, and FF: 57.0%). We believe that this is attributed to high energy transfer and excellent film morphologies.


2021 ◽  
pp. 205-211
Author(s):  
Yuta Yabuuchi ◽  
Yu Minowa ◽  
Shuichi Nagamatsu ◽  
Akihiko Fujii ◽  
Masanori Ozaki

Polymer ◽  
2008 ◽  
Vol 49 (1) ◽  
pp. 192-199 ◽  
Author(s):  
Tsuyoshi Michinobu ◽  
Kensuke Okoshi ◽  
Haruka Osako ◽  
Hiroe Kumazawa ◽  
Kiyotaka Shigehara

2018 ◽  
Vol 51 (21) ◽  
pp. 8652-8661 ◽  
Author(s):  
Fangzheng Chen ◽  
Yu Jiang ◽  
Ying Sui ◽  
Jidong Zhang ◽  
Hongkun Tian ◽  
...  

Author(s):  
Haofan Yang ◽  
Xiaobo Li ◽  
Reiner Sebastian Sprick ◽  
Andrew I. Cooper

A library of 237 organic binary/ternary nanohybrids consisting of conjugated polymers donors and both fullerene and non-fullerene molecular acceptors was prepared and screened for sacrificial photocatalytic hydrogen evolution. These donor-acceptor nanohybrids (DANHs) showed significantly enhanced hydrogen evolution rates compared with the parent donor or acceptor compounds. DANHs of <a></a><a>a polycarbazole</a>-based donor combined with a methanofullerene acceptor (PCDTBT/PC<sub>60</sub>BM) showed a high hydrogen evolution rate of 105.2 mmol g<sup>-1</sup> h<sup>-1</sup> under visible light (λ > 420 nm). This DANH photocatalyst produced 5.9 times more hydrogen than a sulfone-containing polymer (P10) under the same conditions, which is one of the most efficient organic photocatalysts reported so far. An apparent quantum yield of hydrogen evolution of 3.0 % at 595 nm was measured for this DANH. The photocatalytic activity of the DANHs, which in optimized cases reached 179.0 mmol g<sup>-1</sup> h<sup>-1</sup>, is attributed to efficient charge transfer at the polymer donor/molecular acceptor interface. We also show that ternary donor<sub>A</sub>-donor<sub>B</sub>-acceptor nanohybrids can give higher activities than binary donor-acceptor hybrids in some cases.


Sign in / Sign up

Export Citation Format

Share Document