Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity

2016 ◽  
Vol 55 (29) ◽  
pp. 8319-8323 ◽  
Author(s):  
Bin Zhang ◽  
Hiroyuki Asakura ◽  
Jia Zhang ◽  
Jiaguang Zhang ◽  
Sudipta De ◽  
...  
2016 ◽  
Vol 128 (29) ◽  
pp. 8459-8463 ◽  
Author(s):  
Bin Zhang ◽  
Hiroyuki Asakura ◽  
Jia Zhang ◽  
Jiaguang Zhang ◽  
Sudipta De ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (40) ◽  
pp. 24925-24932 ◽  
Author(s):  
Shujiao Wang ◽  
Yingxin Feng ◽  
Sen Lin ◽  
Hua Guo

This study will provide a guideline for designing stable single atom catalysts by taking advantage of coordination chemistry and homogeneous catalysis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yiwei Liu ◽  
Xi Wu ◽  
Zhi Li ◽  
Jian Zhang ◽  
Shu-Xia Liu ◽  
...  

AbstractEffecting the synergistic function of single metal atom sites and their supports is of great importance to achieve high-performance catalysts. Herein, we successfully fabricate polyoxometalates (POMs)-stabilized atomically dispersed platinum sites by employing three-dimensional metal-organic frameworks (MOFs) as the finite spatial skeleton to govern the accessible quantity, spatial dispersion, and mobility of metal precursors around each POM unit. The isolated single platinum atoms (Pt1) are steadily anchored in the square-planar sites on the surface of monodispersed Keggin-type phosphomolybdic acid (PMo) in the cavities of various MOFs, including MIL-101, HKUST-1, and ZIF-67. In contrast, either the absence of POMs or MOFs yielded only platinum nanoparticles. Pt1-PMo@MIL-101 are seven times more active than the corresponding nanoparticles in the diboration of phenylacetylene, which can be attributed to the synergistic effect of the preconcentration of organic reaction substrates by porous MOFs skeleton and the decreased desorption energy of products on isolated Pt atom sites.


Author(s):  
Wah Chi

Resolution and contrast are the important factors to determine the feasibility of imaging single heavy atoms on a thin substrate in an electron microscope. The present report compares the atom image characteristics in different modes of fixed beam dark field microscopy including the ideal beam stop (IBS), a wire beam stop (WBS), tilted illumination (Tl) and a displaced aperture (DA). Image contrast between one Hg and a column of linearly aligned carbon atoms (representing the substrate), are also discussed. The assumptions in the present calculations are perfectly coherent illumination, atom object is represented by spherically symmetric potential derived from Relativistic Hartree Fock Slater wave functions, phase grating approximation is used to evaluate the complex scattering amplitude, inelastic scattering is ignored, phase distortion is solely due to defocus and spherical abberation, and total elastic scattering cross section is evaluated by the Optical Theorem. The atom image intensities are presented in a Z-modulation display, and the details of calculation are described elsewhere.


Author(s):  
J. J. Hren ◽  
S. D. Walck

The field ion microscope (FIM) has had the ability to routinely image the surface atoms of metals since Mueller perfected it in 1956. Since 1967, the TOF Atom Probe has had single atom sensitivity in conjunction with the FIM. “Why then hasn't the FIM enjoyed the success of the electron microscope?” The answer is closely related to the evolution of FIM/Atom Probe techniques and the available technology. This paper will review this evolution from Mueller's early discoveries, to the development of a viable commercial instrument. It will touch upon some important contributions of individuals and groups, but will not attempt to be all inclusive. Variations in instrumentation that define the class of problems for which the FIM/AP is uniquely suited and those for which it is not will be described. The influence of high electric fields inherent to the technique on the specimens studied will also be discussed. The specimen geometry as it relates to preparation, statistical sampling and compatibility with the TEM will be examined.


Author(s):  
G. L. Kellogg ◽  
P. R. Schwoebel

Although no longer unique in its ability to resolve individual single atoms on surfaces, the field ion microscope remains a powerful tool for the quantitative characterization of atomic processes on single-crystal surfaces. Investigations of single-atom surface diffusion, adatom-adatom interactions, surface reconstructions, cluster nucleation and growth, and a variety of surface chemical reactions have provided new insights to the atomic nature of surfaces. Moreover, the ability to determine the chemical identity of selected atoms seen in the field ion microscope image by atom-probe mass spectroscopy has increased or even changed our understanding of solid-state-reaction processes such as ordering, clustering, precipitation and segregation in alloys. This presentation focuses on the operational principles of the field-ion microscope and atom-probe mass spectrometer and some very recent applications of the field ion microscope to the nucleation and growth of metal clusters on metal surfaces.The structure assumed by clusters of atoms on a single-crystal surface yields fundamental information on the adatom-adatom interactions important in crystal growth. It was discovered in previous investigations with the field ion microscope that, contrary to intuition, the initial structure of clusters of Pt, Pd, Ir and Ni atoms on W(110) is a linear chain oriented in the <111> direction of the substrate.


Nanoscale ◽  
2020 ◽  
Vol 12 (15) ◽  
pp. 8065-8094 ◽  
Author(s):  
Xudong Wen ◽  
Jingqi Guan

Different kinds of electrocatalysts used in NRR electrocatalysis (including single atom catalysts, metal oxide catalysts, nanocomposite catalysts, and metal free catalysts) are introduced.


Nanoscale ◽  
2020 ◽  
Vol 12 (39) ◽  
pp. 20413-20424
Author(s):  
Riming Hu ◽  
Yongcheng Li ◽  
Fuhe Wang ◽  
Jiaxiang Shang

Bilayer single atom catalysts can serve as promising multifunctional electrocatalysts for the HER, ORR, and OER.


1984 ◽  
Vol 45 (C9) ◽  
pp. C9-343-C9-347 ◽  
Author(s):  
T. Sakurai ◽  
T. Hashizume ◽  
A. Jimbo
Keyword(s):  

1955 ◽  
Vol 18 (4) ◽  
pp. 374-378
Author(s):  
Mogens Sprechler

SUMMARY Since 1949 about 10,000 urinary corticoid analyses have been performed routinely in our laboratory. The method used for this purpose was described in 1950 (Sprechler). We determine the corticoids which can be extracted from the urine with chloroform immediately after acidification to pH 1. The extract is washed with sodium hydroxide and water, a Girard separation is performed, and finally the reducing power of the ketonic fraction is measured by means of the phosphomolybdic acid reagent reaction. During the last few years two other chemical reactions have been used for comparison: The formaldehyde and the Porter-Silber method. After a thorough examination of the above methods a standard technique was followed. In the formaldehyde method a microdiffusion in a Conway unit was used instead of distillation of the formaldehyde following the oxidation with periodic acid. The calibration curve was corrected for loss of material by taking the standard doses of DOC through all the procedures of the method. A micromodification of the Porter-Silber method was chosen. Furthermore attempts were made to determine how specific the chromatographic procedure is in the determination of steroids in urinary extracts. For this purpose the Florisil column was used, and the technique described by Nelson & Samuels was followed. Finally we have investigated the glucuronide-bound corticoids in urine in a smaller series of objects.


Sign in / Sign up

Export Citation Format

Share Document