Single Atom Image Contrast in Fixed Beam Dark Field Electron Microscopy

Author(s):  
Wah Chi

Resolution and contrast are the important factors to determine the feasibility of imaging single heavy atoms on a thin substrate in an electron microscope. The present report compares the atom image characteristics in different modes of fixed beam dark field microscopy including the ideal beam stop (IBS), a wire beam stop (WBS), tilted illumination (Tl) and a displaced aperture (DA). Image contrast between one Hg and a column of linearly aligned carbon atoms (representing the substrate), are also discussed. The assumptions in the present calculations are perfectly coherent illumination, atom object is represented by spherically symmetric potential derived from Relativistic Hartree Fock Slater wave functions, phase grating approximation is used to evaluate the complex scattering amplitude, inelastic scattering is ignored, phase distortion is solely due to defocus and spherical abberation, and total elastic scattering cross section is evaluated by the Optical Theorem. The atom image intensities are presented in a Z-modulation display, and the details of calculation are described elsewhere.

Author(s):  
E. J. Kirkland ◽  
R. F. Loane ◽  
J. Silcox

The multislice method (e.g. Goodman and Moodie) of simulating bright field conventional transmission electron microscope (BF-CTEM) images of crystalline specimens can be extended to simulation of scanning transmission electron microscope (STEM) images of similar specimens in the annular dark field (ADF) mode. According to the reciprocity theorem (Pogany and Turner and Cowley) BF-CTEM would be equivalent to BF STEM with a point detector. Such a detector (STEM) however would yield an exceedingly small signal to noise ratio. Thus, STEM has found more use in the ADF mode (e.g. Crewe et al.) exploiting the large contrast arising from heavy atoms. In BF imaging (CTEM and STEM) the constrast is roughly proportional to the scattering amplitude f α Z3/4 whereas in DF (CTEM and STEM) imaging it is roughly proportional to the scattering cross σ α Z3/2 where Z is atomic number, a form that is advantageous foatom discrimination.


Author(s):  
K. H. Downin

The ability to distinguish between heavy and light components of a specimen, and especially to distinguish single heavy atoms, would be a great benefit in many instances. Even with the demonstrated ability of the STEM, and of the CTEM especially in dark field, to image single atoms, it is of interest to know the possibility of using bright field in a conventional microscope with subsequent image processing to obtain images of single heavy atoms separated from the image of a lighter supporting film.Single-sideband image reconstruction, involving the combination of two images obtained using opposite halves of the diffraction pattern, offers in principle the ability to separate images of heavy and light specimen components, or specimen components giving rise to amplitude and phase contrast, respectively. This has been demonstrated in electron microscopy^, but under conditions or low resolution, where inelastic scattering, as well as scattering outside the effective objective aperture, contribute heavily to the component with amplitude contrast.


Author(s):  
J. Fertig ◽  
H. Rose

For very high-resolution imaging the dark-field mode is widely used in electron microscopy because it produces generally higher contrast than bright-field. The relation between image intensity and object potential is highly nonlinear for dark-field imaging. To allow for arbitrary objects, one can rewrite the expression for the image intensity in terms of the complex scattering amplitude of the object. In the case of dark-field imaging, the formula for image intensity will contain the square of the complex scattering amplitude. Consequently the image intensity of N atoms is the sum of the intensities of N single atom images plus the sum over the cross-terms (one for each pair of atoms) arising from partially coherent superposition of scattered waves emanating from different atoms. The mutual intensity can be positive or negative. Therefore, at a point between two adjacent atoms, the intensity may be lowered to such an extent that the atoms are resolved, even if their interatomic distance is smaller than the resolution limit of the microscope (“superresolution”).


Author(s):  
J. Taft∅

It is well known that for reflections corresponding to large interplanar spacings (i.e., sin θ/λ small), the electron scattering amplitude, f, is sensitive to the ionicity and to the charge distribution around the atoms. We have used this in order to obtain information about the charge distribution in FeTi, which is a candidate for storage of hydrogen. Our goal is to study the changes in electron distribution in the presence of hydrogen, and also the ionicity of hydrogen in metals, but so far our study has been limited to pure FeTi. FeTi has the CsCl structure and thus Fe and Ti scatter with a phase difference of π into the 100-ref lections. Because Fe (Z = 26) is higher in the periodic system than Ti (Z = 22), an immediate “guess” would be that Fe has a larger scattering amplitude than Ti. However, relativistic Hartree-Fock calculations show that the opposite is the case for the 100-reflection. An explanation for this may be sought in the stronger localization of the d-electrons of the first row transition elements when moving to the right in the periodic table. The tabulated difference between fTi (100) and ffe (100) is small, however, and based on the values of the scattering amplitude for isolated atoms, the kinematical intensity of the 100-reflection is only 5.10-4 of the intensity of the 200-reflection.


2011 ◽  
Vol 17 (6) ◽  
pp. 847-858 ◽  
Author(s):  
Michael M.J. Treacy

AbstractA simple parameterization is presented for the elastic electron scattering cross sections from single atoms into the annular dark-field (ADF) detector of a scanning transmission electron microscope (STEM). The dependence on atomic number, Z, and inner reciprocal radius of the annular detector, q0, of the cross section σ(Z,q0) is expressed by the empirical relationwhere A(q0) is the cross section for hydrogen (Z = 1), and the detector is assumed to have a large outer reciprocal radius. Using electron elastic scattering factors determined from relativistic Hartree-Fock simulations of the atomic electron charge density, values of the exponent n(Z,q0) are tabulated as a function of Z and q0, for STEM probe sizes of 1.0 and 2.0 Å.Comparison with recently published experimental data for single-atom scattering [Krivanek et al. (2010). Nature464, 571–574] suggests that experimentally measured exponent values are systematically lower than the values predicted for elastic scattering from low-Z atoms. It is proposed that this discrepancy arises from the inelastic scattering contribution to the ADF signal. A simple expression is proposed that corrects the exponent n(Z,q0) for inelastic scattering into the annular detector.


2013 ◽  
Vol 20 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Ryo Ishikawa ◽  
Andrew R. Lupini ◽  
Scott D. Findlay ◽  
Stephen J. Pennycook

AbstractOne of the difficulties in analyzing atomic resolution electron microscope images is that the sample thickness is usually unknown or has to be fitted from parameters that are not precisely known. An accurate measure of thickness, ideally on a column-by-column basis, parameter free, and with single atom accuracy, would be of great value for many applications, such as matching to simulations. Here we propose such a quantification method for annular dark field scanning transmission electron microscopy by using the single electron intensity level of the detector. This method has the advantage that we can routinely quantify annular dark field images operating at both low and high beam currents, and under high dynamic range conditions, which is useful for the quantification of ultra-thin or light-element materials. To facilitate atom counting at the atomic scale we use the mean intensity in an annular dark field image averaged over a primitive cell, with no free parameters to be fitted. To illustrate the potential of our method, we demonstrate counting the number of Al (or N) atoms in a wurtzite-type aluminum nitride single crystal at each primitive cell over the range of 3–99 atoms.


2012 ◽  
Vol 18 (6) ◽  
pp. 1342-1354 ◽  
Author(s):  
Wu Zhou ◽  
Mark P. Oxley ◽  
Andrew R. Lupini ◽  
Ondrej L. Krivanek ◽  
Stephen J. Pennycook ◽  
...  

AbstractWe show that aberration-corrected scanning transmission electron microscopy operating at low accelerating voltages is able to analyze, simultaneously and with single atom resolution and sensitivity, the local atomic configuration, chemical identities, and optical response at point defect sites in monolayer graphene. Sequential fast-scan annular dark-field (ADF) imaging provides direct visualization of point defect diffusion within the graphene lattice, with all atoms clearly resolved and identified via quantitative image analysis. Summing multiple ADF frames of stationary defects produce images with minimized statistical noise and reduced distortions of atomic positions. Electron energy-loss spectrum imaging of single atoms allows the delocalization of inelastic scattering to be quantified, and full quantum mechanical calculations are able to describe the delocalization effect with good accuracy. These capabilities open new opportunities to probe the defect structure, defect dynamics, and local optical properties in 2D materials with single atom sensitivity.


Author(s):  
R.F. Egerton ◽  
M. Misra

So-called "atomic-number contrast" is obtained in STEM by displaying a ratio signal formed by dividing the annular-dark-field signal Iad by the inelastic component Ii of the bright-field intensity (isolated by means of an electron spectrometer; see Fig. 1). Originally used for single-atom imaging, the technique has more recently been applied to polymer samples and biological tissue.We report here estimates of the ratio signal from organic specimens, based on the following assumptions:(1) That the specimen is amorphous and that phase contrast may be neglected for the electron-optical conditions and specimen features being considered; (2) That atomic cross sections may be used to estimate the amount of elastic and inelastic scattering. Modern calculations differ from simple Lenz theory in predicting that the cross section is not a smoothly-increasing function of atomic number (see Fig. 2), particularly for the 1ighter elements. (3) We assume a slightly idealized detection system in which all elastically scattered electrons contribute to Iad, while all electrons which have been inelastically (but not elastically) scattered contribute to Ii.


Sign in / Sign up

Export Citation Format

Share Document