Internally 2,5-Thienylene-Bridged [46]Decaphyrin: (Annuleno)annulene Network Consisting of Möbius Aromatic Thia[28]hexaphyrins and Strong Hückel Aromaticity of its Protonated Form

2017 ◽  
Vol 56 (12) ◽  
pp. 3232-3236 ◽  
Author(s):  
Takanori Soya ◽  
Hirotaka Mori ◽  
Yongseok Hong ◽  
Yun Hee Koo ◽  
Dongho Kim ◽  
...  
Keyword(s):  
2021 ◽  
Vol 502 (3) ◽  
pp. 4064-4073
Author(s):  
Y Ellinger ◽  
M Lattelais ◽  
F Pauzat ◽  
J-C Guillemin ◽  
B Zanda

ABSTRACT The analysis of the organic matter of meteorites made it possible to identify over 70 amino acids (AA), including 8 of those found in living organisms. However, their relative abundances vary drastically with the type of the carbonaceous chondrite, even for isomers of same chemical formula. In this report, we address the question whether this difference may have its origin in the relative stability of these isomers according to the conditions they experienced when they were formed and after. To this end, we rely on the fact that for most of the species observed so far in the interstellar medium (ISM), the most abundant isomer of a given generic chemical formula is the most stable one (minimum energy principle, MEP). Using quantum density functional theory (DFT) simulations, we investigate the relative stability of the lowest energy isomers of alanine (Ala) and amino butyric acid (ABA) in the neutral, protonated, and zwitterionic structures together with corresponding nitrile precursors. It is shown that β-alanine and γ-ABA are the most stable in a protonated form, whereas α-AA are the most stable in the zwitterionic and nitrile structures. The different composition of the carbonaceous chondrites CIs and CMs could be linked to the chemical context of the aqueous alterations of the parent bodies.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Karl E. Kador ◽  
Anuradha Subramanian

Chitosan, a polyaminosaccharide, has been investigated for its use in the field of drug-delivery and biomaterial applications because of its natural biocompatibility and polycationic properties. Chemical modifications of chitosan have been attempted in an effort to increase the transfection efficiency with respect to gene delivery applications; however, it is unknown how these modifications affect the formation of the condensates. This study attempts to determine the effects of modification of the cationic center of chitosan on the ability to condense DNA. Specifically, electron-donating or -withdrawing groups were used as modifiers of the cationic charge on the chitosan backbone to stabilize the protonated form of chitosan, which is necessary to form condensates and increase the efficiency of the polymer to condense DNA by yielding condensates at a lower nitrogen to phosphorous (N : P) ratio. While an N : P ratio of 7 is needed to condense DNA with unmodified chitosan, phthalate-modified chitosan yielded condensates were obtained at an N : P ratio of 1.0.


2021 ◽  
Vol 55 (4) ◽  
pp. 285-294
Author(s):  
M. F. Budyka ◽  
T. N. Gavrishova ◽  
V. M. Li ◽  
S. A. Dozmorov ◽  
V. I. Kozlovskii

2018 ◽  
Vol 74 (11) ◽  
pp. 1427-1433 ◽  
Author(s):  
Ewa Żesławska ◽  
Wojciech Nitek ◽  
Waldemar Tejchman ◽  
Jadwiga Handzlik

The arylidene–imidazolone derivatives are a group of compounds of great interest in medicinal chemistry due to their various pharmacological actions. In order to study the possible conformations of an arylidene–imidazolone derivative, two new crystal structures were determined by X-ray diffraction, namely (Z)-5-(4-chlorobenzylidene)-2-(4-methylpiperazin-1-yl)-3H-imidazol-5(4H)-one, C15H17ClN4O, (6), and its salt 4-[5-(4-chlorobenzylidene)-5-oxo-4,5-dihydro-3H-imidazol-2-yl]-1-methylpiperazin-1-ium 3-{5-[4-(diethylamino)benzylidene]-4-oxo-2-thioxothiazolidin-3-yl}propionate, C15H18ClN4O+·C17H19N2O3S2 −, (7). Both compounds crystallize in the space group P\overline{1}. The basic form (6) crystallizes with two molecules in the asymmetric unit. In the acid form of (6), the N atom of the piperazine ring is protonated by proton transfer from the carboxyl group of the rhodanine acid derivative. The greatest difference in the conformations of (6) and its protonated form, (6c), is observed in the location of the arylidene–imidazolone substituent at the N atom. In the case of (6c), the position of this substituent is close to axial, while for (6), the corresponding position is intermediate between equatorial and axial. The crystal packing is dominated by a network of N—H...O hydrogen bonds. Furthermore, the crystal structures are stabilized by numerous intermolecular contacts of types C—H...N and C—H...Cl in (6), and C—H...O and C—H...S in (7). The geometry with respect to the location of the substituents at the N atoms of the piperazine ring was compared with other crystal structures possessing an N-methylpiperazine moiety.


2011 ◽  
Vol 76 (12) ◽  
pp. 1699-1715 ◽  
Author(s):  
Sławomira Skrzypek ◽  
Valentin Mirceski ◽  
Sylwia Smarzewska ◽  
Dariusz Guziejewski ◽  
Witold Ciesielski

Although 2-guanidinobenzimidazole (GBI; CAS: 5418-95-1) is a compound of biological interest, generally there is a lack of electrochemical studies and the methods of its determination. The GBI behavior at a mercury electrode was analyzed under conditions of linear sweep voltammetry (LSV), differential pulse voltammetry (DPV), square-wave voltammetry (SWV) and square-wave stripping voltammetry (SWSV). Although GBI is electrochemically inactive at mercury electrode it adsorbs at the mercury surface and catalyzes effectively the hydrogen evolution reaction. Theoretical analysis of two possible pathways, according to which the GBI electrode mechanism can be explained, is performed. Simple analysis of peak current and potential with respect to available time window, i.e. change of frequency can be helpful in discerning the character of the recorded SW current. The established electrode mechanism is assumed to involve a preceding chemical reaction in which the adsorbed catalyst (GBIads) is protonated and the protonated form of the catalyst (GBIH+(ads)) is irreversibly reduced at potential about –1.18 V vs Ag|AgCl (citrate buffer pH 2.5). New methods of voltammetric determination of 2-guanidinobenzimidazole were developed. The detection and quantifications limits were found to be 1 × 10–7, 1 × 10–6 mol l–1 (SWV); 8 × 10–8, 9 × 10–7 mol l–1 (SWSV); 4 × 10–7, 2 × 10–6 mol l–1 (DPV) and 6 × 10–7, 3 × 10–6 mol l–1 (LSV), respectively.


2020 ◽  
Author(s):  
Maegan Dailey ◽  
Claire Besson

Four polymorphs of bis(phthalocyaninato)neodymium(III) were reproducibly and selectively crystallized by the slow evaporation of saturated solutions. The obtained phase depended on the initial oxidation state of the NdPc<sub>2</sub> molecule and the choice of solvent. Single-crystal X-ray diffraction studies were used to correct previous mis-identifications and provide missing coordinates for the γ-phase as well as a detailed comparison of molecular structure and crystal packing in all NdPc<sub>2</sub> polymorphs. The primary feature in all phases is columnar stacking based on parallel π π interactions, with a variety of slip angles within those stacks as well as secondary interactions between them. Chemical redox and acid-base titrations, performed on re-dissolved crystals demonstrate that NdPc<sub>2</sub><sup>+</sup> and NdPc<sub>2</sub><sup>-</sup> are easily obtained through weak oxidizing and reducing agents, respectively. Additionally, we show that the protonated form of the NdPc<sub>2</sub><sup>-</sup> complex has a nearly identical UV-Vis spectra to that of neutral NdPc<sub>2</sub>, explaining some of the confusion over chemical composition in previously published literature.<br>


Author(s):  
Tadeusz Głowiak ◽  
Irena Majerz ◽  
Zbigniew Malarski ◽  
Lucjan Sobczyk ◽  
Alexander. F. Pozharskii ◽  
...  

1976 ◽  
Vol 54 (8) ◽  
pp. 1205-1210 ◽  
Author(s):  
Ahmad S. Shawali ◽  
Bahgat E. El-Anadouli

Polarographic reduction of two series of benzoylacetanilides has been investigated in 40% (by volume) ethanolic Britton–Robinson buffers. One series (A) contains substituents on the anilide moiety, and the second (B) has substituents on both the anilide and benzoyl moieties. Polarographic controlled-potential electrolysis data indicate that the electroactive species in both series is the protonated form (ArCOCH2CONHAr′)H+. The reduction half-wave potentials of anilides of series A were found to be independent of the nature of the substituent, whereas those of series B show a good linear relationship when plotted vs. the σ substituent constant of the substituent on the benzoyl moiety (ρ = 0.284, r = 0.995). Values of the acid dissociation constants of the keto (K1) and enol (K2) tautomers of the anilides of series A were calculated; unlike their E1/2 values, the pK1 data show a linear correlation with the Hammett substituent constant, σ. The pK2 values show, however, little variation with σ.


Sign in / Sign up

Export Citation Format

Share Document