Preparation and characterization of high efficiency ion-exchange crosslinked acrylic fibers

2006 ◽  
Vol 101 (4) ◽  
pp. 2202-2209 ◽  
Author(s):  
Ahmad M. Shoushtari ◽  
Mojdeh Zargaran ◽  
Majid Abdouss
2020 ◽  
Vol 12 (39) ◽  
pp. 43750-43760 ◽  
Author(s):  
Hanvin Kim ◽  
Dae-Yeong Kim ◽  
Shungo Zen ◽  
Jun Kang ◽  
Nozomi Takeuchi

2021 ◽  
pp. 2102988
Author(s):  
Ian E. Jacobs ◽  
Yue Lin ◽  
Yuxuan Huang ◽  
Xinglong Ren ◽  
Dimitrios Simatos ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Roey Elnathan ◽  
Andrew W. Holle ◽  
Jennifer Young ◽  
Marina A. George ◽  
Omri Heifler ◽  
...  

AbstractProgrammable nano-bio interfaces driven by tuneable vertically configured nanostructures have recently emerged as a powerful tool for cellular manipulations and interrogations. Such interfaces have strong potential for ground-breaking advances, particularly in cellular nanobiotechnology and mechanobiology. However, the opaque nature of many nanostructured surfaces makes non-destructive, live-cell characterization of cellular behavior on vertically aligned nanostructures challenging to observe. Here, a new nanofabrication route is proposed that enables harvesting of vertically aligned silicon (Si) nanowires and their subsequent transfer onto an optically transparent substrate, with high efficiency and without artefacts. We demonstrate the potential of this route for efficient live-cell phase contrast imaging and subsequent characterization of cells growing on vertically aligned Si nanowires. This approach provides the first opportunity to understand dynamic cellular responses to a cell-nanowire interface, and thus has the potential to inform the design of future nanoscale cellular manipulation technologies.


RSC Advances ◽  
2021 ◽  
Vol 11 (35) ◽  
pp. 21248-21258
Author(s):  
Di Zhang ◽  
Pengle Zhang ◽  
Du Xiao ◽  
Xiaogang Hao

Novel ion permselective membrane modules based on the ESIX scheme.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Celosia Lukman ◽  
Christopher Yonathan ◽  
Stella Magdalena ◽  
Diana Elizabeth Waturangi

Abstract Objective This study was conducted to isolate and characterize lytic bacteriophages for pathogenic Escherichia coli from chicken and beef offal, and analyze their capability as biocontrol for several foodborne pathogens. Methods done in this research are bacteriophage isolation, purification, titer determination, application, determination of host range and minimum multiplicity of infection (miMOI), and bacteriophage morphology. Results Six bacteriophages successfully isolated from chicken and beef offal using EPEC and EHEC as host strain. Bacteriophage titers observed between 109 and 1010 PFU mL−1. CS EPEC and BL EHEC bacteriophage showed high efficiency in reduction of EPEC or EHEC contamination in meat about 99.20% and 99.04%. The lowest miMOI was 0.01 showed by CS EPEC bacteriophage. CI EPEC and BL EPEC bacteriophage suspected as Myoviridae family based on its micrograph from Transmission Electron Microscopy (TEM). Refers to their activity, bacteriophages isolated in this study have a great potential to be used as biocontrol against several foodborne pathogens.


Author(s):  
R. Puente ◽  
G. Paniagua ◽  
T. Verstraete

A multi-objective optimization procedure is applied to the 3D design of a transonic turbine vane row, considering efficiency and stator outlet pressure distortion, which is directly related to induced rotor forcing. The characteristic features that define different individuals along the Pareto Front are described, analyzing the differences between high efficiency airfoils and low interaction. Pressure distortion is assessed by means of a model that requires only of the computation the steady flow field in the domain of the stator. The reduction of aerodynamic rotor forcing is checked via unsteady multistage aerodynamic computations. A well known loss prediction method is used to drive the efficiency of one optimization run, while CFD analysis is used for another, in order to assess the reliability of both methods. In both cases, the decomposition of total losses is performed to quantify the influence on efficiency of reducing rotor forcing. Results show that when striving for efficiency, the rotor is affected by few, but intense shocks. On the other hand, when the objective is the minimization of distortion, multiple shocks will appear.


2010 ◽  
Vol 76 (21) ◽  
pp. 7268-7276 ◽  
Author(s):  
Rubén Cebrián ◽  
Mercedes Maqueda ◽  
José Luis Neira ◽  
Eva Valdivia ◽  
Manuel Martínez-Bueno ◽  
...  

ABSTRACT AS-48 is a 70-residue, α-helical, cationic bacteriocin produced by Enterococcus faecalis and is very singular in its circular structure and its broad antibacterial spectrum. The AS-48 preprotein consists of an N-terminal signal peptide (SP) (35 residues) followed by a proprotein moiety that undergoes posttranslational modifications to yield the mature and active circular protein. For the study of the specificity of the region of AS-48 that is responsible for maturation, three single mutants have been generated by site-directed mutagenesis in the as-48A structural gene. The substitutions were made just in the residues that are thought to constitute a recognition site for the SP cleavage enzyme (His-1, Met1) and in those involved in circularization (Met1, Trp70). Each derivative was expressed in the enterococcal JH2-2 strain containing the necessary native biosynthetic machinery for enterocin production. The importance of these derivatives in AS-48 processing has been evaluated on the basis of the production and structural characterization of the corresponding derivatives. Notably, only two of them (Trp70Ala and Met1Ala derivatives) could be purified in different forms and amounts and are characterized for their bactericidal activity and secondary structure. We could not detect any production of AS-48 in JH2-2(pAM401-81 His-1Ile ) by using the conventional chromatographic techniques, despite the high efficiency of the culture conditions applied to produce this enterocin. Our results underline the different important roles of the mutated residues in (i) the elimination of the SP, (ii) the production levels and antibacterial activity of the mature proteins, and (iii) protein circularization. Moreover, our findings suggest that His-1 is critically involved in cleavage site recognition, its substitution being responsible for the blockage of processing, thereby hampering the production of the specific protein in the cellular culture supernatant.


1996 ◽  
Vol 203 ◽  
pp. 97-102 ◽  
Author(s):  
G. Timò ◽  
C. Flores ◽  
R. Campesato ◽  
D. Passoni ◽  
B. Bollani
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document