Effects of hot-air aging and dynamic fatigue on the structure and dynamic viscoelastic properties of unfilled natural rubber vulcanizates

2007 ◽  
Vol 107 (3) ◽  
pp. 1911-1916 ◽  
Author(s):  
Ping Zhang ◽  
Xinyan Shi ◽  
Junge Li ◽  
Guangshui Yu ◽  
Shugao Zhao
2010 ◽  
Vol 49 (3) ◽  
pp. 429-439 ◽  
Author(s):  
Jingjie Han ◽  
Ning Shi ◽  
Linsheng Xie ◽  
Yulu Ma ◽  
Chifei Wu

The effect of thermal aging and cyclic loading on mechanical properties and development of cracks in natural rubber vulcanizates was studied. After aging at 70oC and 110oC vulcanizates were subjected to cyclic loading. At a certain number of loading cycles, the samples were conducted in a tension test. At the aging condition of 70oC, the static tensile properties of material stay almost unchanged even after 88 aged hours and 8000 loading cycles. On the contrary, the dynamic fatigue resistance of vulcanizates decreases with increasing aging time. These results are attributed to the post-curing and the development of microcracks that might be caused by Mullins effect: in the case of static loading, the strain-induced crystallization may prevent cracks growth, but in the case of cyclic loading the strain-induced crystallization does not occur, so cracks develop without hindrance. However, at 110oC both static properties and dynamic fatigue resistance of material reduced dramatically because at high temperature the heat degradation exceeds both post-curing and strain-induced crystallization. Crack formation and propagation were examined by a digital optical microscope in the progress of cyclic loading. Results showed that natural rubber vulcanizate filled with carbon black has the best crack growth resistance (CGR) while the addition of modified and unmodified silica reduces CGR of materials. Moreover, the vulcanizate with unmodified silica has the lowest CGR.


1959 ◽  
Vol 32 (3) ◽  
pp. 739-747 ◽  
Author(s):  
J. R. Dunn ◽  
J. Scanlan

Abstract The thermal and photochemical aging of extracted dicumyl peroxide-, TMTD (sulfurless)- and santocure-vulcanized rubber, in presence of a number of metal and alkylammonium dithiocarbamates, has been investigated by measurements of stress relaxation. The dithiocarbamates have a considerable protective action upon the degradation of peroxide- and TMTD-vulcanizates, but they accelerate stress decay in santocure-accelerated vulcanizates. The reasons for this behavior are discussed. It is suggested that the excellent aging properties of unextracted TMTD vulcanizates are due to the presence of zinc dimethyldithiocarbamate formed during vulcanization.


2007 ◽  
Vol 80 (5) ◽  
pp. 751-761 ◽  
Author(s):  
Seiichi Kawahara ◽  
Jinta Ukawa ◽  
Junichiro Sakai ◽  
Yoshimasa Yamamoto ◽  
Yoshinobu Isono

Abstract Crosslinking junctions of natural rubber vulcanizates were characterized by high-resolution latex-state 13C-NMR spectroscopy. Vulcanized natural rubber latex was prepared by two methods: i.e., vulcanization of the rubber latex and cryogenic crushing of a rubber sheet vulcanized on a hot press. High-resolution latex-state 13C-NMR spectroscopy was attained even after vulcanization of the rubber latex, as is evident from no background in spectrum and narrow half width of signals independent of vulcanization time. Small signals at 44 ppm and 57 ppm in the aliphatic carbon region were assigned by measurements of both Distortionless Enhancement by Polarization Transfer (DEPT) and Attached Proton Test (APT) to secondary and tertiary carbons of crosslinking points. The assignment was proved by high-resolution solution-state NMR spectroscopy of vulcanized liquid cis-1,4-polyisoprene as a model, in which DEPT, APT, 2-dimensional 1H-1H correlation (H-H COSY), 2-dimensional 1H-13C correlation (H-C COSY) and 2-dimensional heteronuclear multiple bond correlation (HMBC) measurements were applied.


Sign in / Sign up

Export Citation Format

Share Document