Effect of in situ polymerization conditions of methyl methacrylate on the structural and morphological properties of poly(methyl methacrylate)/poly(acrylonitrile-g-(ethylene-co-propylene-co-diene)-g-styrene) PMMA/AES Blends

2011 ◽  
Vol 124 (4) ◽  
pp. 2846-2856 ◽  
Author(s):  
Fabiana Pires de Carvalho ◽  
Maria do Carmo Gonçalves ◽  
Maria Isabel Felisberti
Carbon ◽  
2011 ◽  
Vol 49 (8) ◽  
pp. 2615-2623 ◽  
Author(s):  
Jeffrey R. Potts ◽  
Sun Hwa Lee ◽  
Todd M. Alam ◽  
Jinho An ◽  
Meryl D. Stoller ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2747 ◽  
Author(s):  
Lisa Muñoz ◽  
Laura Tamayo ◽  
Miguel Gulppi ◽  
Franco Rabagliati ◽  
Marcos Flores ◽  
...  

An experimental protocol was studied to improve the adhesion of a polymeric poly(methyl methacrylate) coating that was modified with silver nanoparticles to an aluminum alloy, AA2024. The nanoparticles were incorporated into the polymeric matrix to add the property of inhibiting biofilm formation to the anticorrosive characteristics of the film, thus also making the coating antibiocorrosive. The protocol consists of functionalizing the surface through a pseudotransesterification treatment using a methyl methacrylate monomer that bonds covalently to the surface and leaves a terminal double bond that promotes and directs the polymerization reaction that takes place in the process that follows immediately after. This results in more compact and thicker poly(methyl methacrylate) (PMMA) coatings than those obtained without pseudotransesterification. The poly(methyl methacrylate) matrix modified with nanoparticles was obtained by incorporating both the nanoparticles and the methyl methacrylate in the reactor. The in situ polymerization involved combining the pretreated AA2024 specimens combined with the methyl methacrylate monomer and AgNps. The antibiofilm capacity of the coating was evaluated against P. aeruginosa, with an excellent response. Not only did the presence of bacteria decrease, but the formation of the exopolymer subunits was 99.99% lower than on the uncoated aluminum alloy or the alloy coated with unmodified poly(methyl methacrylate). As well and significantly, the potentiodynamic polarization measurements indicate that the PMMA-Ag coating has a good anticorrosive property in a 0.1-M NaCl medium.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jiale Song ◽  
Jiaoxia Zhang ◽  
Chunling Lin

The graphene oxide (GO) was obtained by Hummers' method using natural graphite as raw materials. Then, the GO/poly(methyl methacrylate) (PMMA) nanocomposites were prepared by in situ polymerization. The tribological and electrical properties of nanocomposites were studied. As a result, the frictional coefficient of GO/PMMA nanocomposites was prominently improved with the content of the graphene oxide increasing. The electrical properties of nanocomposites were slightly increased when adding the graphene oxide.


RSC Advances ◽  
2016 ◽  
Vol 6 (14) ◽  
pp. 11419-11429 ◽  
Author(s):  
Mohammad Dinari ◽  
Gholamhossein Mohammadnezhad ◽  
Roozbeh Soltani

Novel mesoporous silica nanocomposites for adsorption of Cu(ii) from aqueous solution were prepared by in situ polymerization of MMA and modified KIT-6 as filler.


Sign in / Sign up

Export Citation Format

Share Document