Recycling of ultrahigh molecular weight polyethylene waste used for preparing high performance synthetic paper

2016 ◽  
Vol 133 (43) ◽  
Author(s):  
Dangdang Cheng ◽  
Yifan Zan ◽  
Juan Du ◽  
Yan Luo
2019 ◽  
Vol 71 (1) ◽  
pp. 22-30 ◽  
Author(s):  
Yanzhen Wang ◽  
Zhongwei Yin

PurposeThis purpose of this study was to investigate the effects of carbon fiber (CF) and/or glass fiber (GF) fillers on the tribological behaviors of ultrahigh-molecular-weight polyethylene (UHMWPE) composites to develop a high-performance water-lubricated journal bearing material.Design/methodology/approachTribological tests were conducted using a pin-on-disc tribometer using polished GCr15 steel pins against the UHMWPE composite discs under dry conditions with a contact pressure of 15 MPa and a sliding speed of 0.15 m/s. Scanning electron microscopy, laser 3D micro-imaging profile measurements and energy-dispersive X-ray spectrometry were used to analyze the morphologies and elemental distributions of the worn surfaces.FindingsThe results showed that hybrid CF and GF fillers effectively improved the wear resistance of the composites. The fiber fillers decreased the contact area, promoted transfer from the polymers and decreased the interlocking and plowing of material pairs, which contributed to the reduction of both the friction coefficient and the wear rate.Originality/valueThe UHMWPE composite containing 12.5 Wt.% CF and 12.5 Wt.% GF showed the best wear resistance of 2.61 × 10−5mm3/(N·m) and the lower friction coefficient of 0.12 under heavy loading. In addition, the fillers changed the worn surface morphology and the wear mechanism of the composites.


2020 ◽  
Vol 32 (9) ◽  
pp. 992-1000 ◽  
Author(s):  
Raouf Belgacemi ◽  
Mehdi Derradji ◽  
Abdelrazak Mouloud ◽  
Djalal Trache ◽  
Abdeldjalil Zegaoui ◽  
...  

In this study, new high-performance composite laminates were prepared from epoxy resin and surface modified ultrahigh-molecular-weight polyethylene (UHMWPE) fibers. The UHMWPE fibers underwent two types of chemical modifications, namely through chromic acid and potassium permanganate oxidations. The adopted chemical procedure aimed the grafting of polar groups on the outer surface of fibers for an improved chemical and physical compatibility with the polymeric matrix. The efficiency of the grafting methodology was confirmed by vibrational, thermal, and morphological analyses, and the grafting mechanism was thoroughly discussed. Furthermore, composite laminates were prepared to study the effects of chemical treatments on the mechanical and morphological properties of the resulting composites. The grafting techniques allowed consequent improvements in the tensile and bending properties, up to 34% and 23% for the tensile and flexural strengths, respectively. The study of the fractured surfaces confirmed the exceptional compatibility between the fillers and the polymeric matrix and further corroborated the mechanical findings. Finally, the adopted modification techniques can be regarded as cost-effective and highly suitable for the manufacturing of structural composites for advanced applications.


Sign in / Sign up

Export Citation Format

Share Document