polyethylene fibers
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 49)

H-INDEX

37
(FIVE YEARS 4)

Polymer ◽  
2021 ◽  
pp. 124420
Author(s):  
Mathias K. Huss-Hansen ◽  
Erik G. Hedlund ◽  
Anton Davydok ◽  
Marie Hansteen ◽  
Gert de Cremer ◽  
...  

2021 ◽  
Vol 9 (11) ◽  
pp. 789-796
Author(s):  
Switibahen D. Soni ◽  
◽  
Pawan P. Gurjar ◽  
Kailash Attur ◽  
Nikunj Patel ◽  
...  

The purpose of this article about the use of polyethylene fibers and resin composite to treat large carious tooth providing a high strength restoration within one appointment. Polyethylene fibers decrease the polymerisation shrinkage and increase the fracture resistance of the teeth. The polyethylene fibers, besides offering the proper strength to the mastication forces, as well reduce the risk of fractures, voids and micro-filtration.


Silicon ◽  
2021 ◽  
Author(s):  
Ayman Rezk ◽  
Juveiriah M. Ashraf ◽  
Wafa Alnaqbi ◽  
Sabina Abdul Hadi ◽  
Ghada Dushaq ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jong Hyun Eun ◽  
Joon Seok Lee

AbstractPolyethylene based carbon fibers were studied using high density polyethylene(HDPE) fibers and linear low density polyethylene(LLDPE) fibers with various melt flow index. The draw ratio of the polyethylene fibers and the sulfonation mechanism were investigated under hydrostatic pressures of 1 and 5 bar in the first time. The influence of the melt flow index of polyethylene and types of polyethylene fibers on the sulfonation reaction was studied. Carbon fibers were prepared through the sulfonation of LLDPE fibers possessing side chains with a high melt flow index. The polyethylene fibers, which exhibited thermoplastic properties and plastic behavior, were cross-linked through the sulfonation process. Their thermal properties and mechanical properties changed to thermoset properties and elastic behavior. Although sulfonation was performed under a hydrostatic pressure of 5 bar, it was difficult to convert the highly oriented polyethylene fibers because of their high crystallinity, but partially oriented polyethylene fibers could be converted to carbon fibers. Therefore, the effect of fiber orientation on fiber crosslinking, which has not been reported in previous literature, has been studied in detail, and a new method of hydrostatic pressure sulfonation has been successful in thermally stabilizing polyethylene fiber. Hydrostatic sulfonation was performed using partially oriented LLDPE fibers with a melt flow index of 20 at 130 °C for 2.5 h under a hydrostatic pressure of 5 bar. The resulting fibers were carbonized under the following conditions: 1000 °C, 5 °C/min, and five minutes. Carbon fibers with a tensile strength of 2.03 GPa, a tensile modulus of 143.63 GPa, and an elongation at break of 1.42% were prepared.


Sign in / Sign up

Export Citation Format

Share Document