uhmwpe composites
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 49)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
pp. 107400
Author(s):  
Hari Shankar Vadivel ◽  
Zainab Al-Maqdasi ◽  
Liva Pupure ◽  
Roberts Joffe ◽  
Mitjan Kalin ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3390
Author(s):  
Donruedee Toyen ◽  
Yupadee Paopun ◽  
Dararat Changjan ◽  
Ekachai Wimolmala ◽  
Sithipong Mahathanabodee ◽  
...  

This work reports on the simulated neutron and self-emitted gamma attenuation of ultra-high-molecular-weight polyethylene (UHMWPE) composites containing varying Sm2O3 contents in the range 0–50 wt.%, using a simulation code, namely MCNP-PHITS. The neutron energy investigated was 0.025 eV (thermal neutrons), and the gamma energies were 0.334, 0.712, and 0.737 MeV. The results indicated that the abilities to attenuate thermal neutrons and gamma rays were noticeably enhanced with the addition of Sm2O3, as seen by the increases in µm and µ, and the decrease in HVL. By comparing the simulated neutron-shielding results from this work with those from a commercial 5%-borated PE, the recommended Sm2O3 content that attenuated thermal neutrons with equal efficiency to the commercial product was 11–13 wt.%. Furthermore, to practically improve surface compatibility between Sm2O3 and the UHMWPE matrix and, subsequently, the overall wear/mechanical properties of the composites, a silane coupling agent (KBE903) was used to treat the surfaces of Sm2O3 particles prior to the preparation of the Sm2O3/UHMWPE composites. The experimental results showed that the treatment of Sm2O3 particles with 5–10 pph KBE903 led to greater enhancements in the wear resistance and mechanical properties of the 25 wt.% Sm2O3/UHMWPE composites, evidenced by lower specific wear rates and lower coefficients of friction, as well as higher tensile strength, elongation at break, and surface hardness, compared to those without surface treatment and those treated with 20 pph KBE903. In conclusion, the overall results suggested that the addition of Sm2O3 in the UHMWPE composites enhanced abilities to attenuate not only thermal neutrons but also gamma rays emitted after the neutron absorption by Sm, while the silane surface treatment of Sm2O3, using KBE903, considerably improved the processability, wear resistance, and strength of the composites.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tian Yang ◽  
Haiping Xu ◽  
Yongliang Jin ◽  
Ke Huang ◽  
Jiesong Tu ◽  
...  

Abstract A range of ultra-high molecular weight polyethylene (UHMWPE)/tetraphenyltin (Ph4Sn) nanocomposites were fabricated by hot-pressing. The surface hardness and crystallinity of composites were studied. It revealed that the surface hardness of the composites decreased slightly, and the changing trend of crystallinity was consistent with the hardness. The tribological properties of composites under seawater lubricating conditions were investigated. The experimental results showed that the friction coefficients of the composites almost keep the same but the wear reduced sharply. With the increases of Ph4Sn content, the wear of composites first decreases significantly and then increases, meanwhile the friction coefficient remains basically unchanged. The dominant wear mechanism has changed from adhesive wear to plastic deformation and finally to abrasive wear. The addition of Ph4Sn particles reduces the sensitivity of the Ph4Sn/UHMWPE composites to water and transfers the load to the UHMWPE network, resulting in the wear resistance improved.


2021 ◽  
Author(s):  
Jitai Han ◽  
Weipeng Duan ◽  
Qingfeng Xia ◽  
Dalei Song

Sign in / Sign up

Export Citation Format

Share Document