Acrylic‐based fire‐retardant coatings for steel protection: Employing the concept of in situ ceramization

2020 ◽  
pp. 50299
Author(s):  
Sheik Mohamed Anees ◽  
Aravind Dasari
Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2629
Author(s):  
Shimin Chen ◽  
Bo Li ◽  
Rengui Xiao ◽  
Huanhu Luo ◽  
Siwu Yu ◽  
...  

In this work, a ternary TiO2/Graphene oxide/Polyaniline (TiO2/GO/PANI) nanocomposite was synthesized by in situ oxidation and use as a filler on epoxy resin (TiO2/GO/PANI/EP), a bifunctional in situ protective coating has been developed and reinforced the Q235 carbon steel protection against corrosion. The structure and optical properties of the obtained composites are characterized by XRD, FTIR, and UV–vis. Compared to bare TiO2 and bare Q235, the TiO2/GO/PANI/EP coating exhibited prominent photoelectrochemical properties, such as the photocurrent density increased 0.06 A/cm2 and the corrosion potential shifted from −651 mV to −851 mV, respectively. The results show that the TiO2/GO/PANI nanocomposite has an extended light absorption range and the effective separation of electron-hole pairs improves the photoelectrochemical performance, and also provides cathodic protection to Q235 steel under dark conditions. The TiO2/GO/PANI/EP coating can isolate the Q235 steel from the external corrosive environment, and may generally be regarded a useful protective barrier coating to metallic materials. When the TiO2/GO/PANI composite is dispersed in the EP, the compactness of the coating is improved and the protective barrier effect is enhanced.


Author(s):  
W. R. Goynes ◽  
L. L. Muller ◽  
E. K. Boylston

The production of textile materials with reduced flammability is a research goal necessitated by the desire to reduce accidental burnings, as well as the need to meet increasingly strong legislative regulations. Cotton is normally a flammable material. A suitable fire-retardant treatment must give the fabric resistance to flaming and afterglow without detracting from the desirable natural properties of the cotton fiber. Generally, phosphorus-containing materials are very effective fire retardants. In situ polymerization of phosphorus-containing polymers on the surface and within a fiber is a practical means of imparting some degree of fire-retardancy.Tris(hydroxymethyl)phosphonium hydroxide (THPOH) can be formed from the reaction of tetrakis(hydroxymethyl)phosphonium chloride with sodium hydroxide.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 168
Author(s):  
Caroline Akinyi ◽  
Jimmy Longun ◽  
Siqi Chen ◽  
Jude O. Iroh

Polyimide-graphene composites were synthesized by in-situ condensation polymerization and the thermal stability and decomposition behavior of the composites were studied. Polyimides, because of their aromatic backbone, are a class of fire-retardant polymers. Their high char retention ≥50% at testing temperatures ≥600 °C makes them thermally stable polymers. The effect of nanographene sheets on the decomposition behavior of polyimide is presented in this paper. It is shown that the reinforcement of polyimide with nanographene sheets significantly decreased the rate of decomposition of polyimide and increased the char retention of the composite. Thermogravimetric analysis data were used to assess the thermal stability, rate of mass loss and predicted limiting oxygen index of the neat polyimide and composites. Results obtained showed around a 43% decrease in the rate of polyimide degradation at 50 wt.% graphene loading. The limiting oxygen index of the polyimide nanocomposite was calculated by using the char retention, and it was found to increase by up to 24% at 50 wt.% graphene loading over that for the neat matrix.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tom Franke ◽  
Thomas Volkmer

Abstract Within the focus to apply substances for wood protections, here fire retardants, with low hazardous and low environmental impact is of interest. Additionally, European oak is an attractive species for various interior and exterior applications. However, oak is classified as very heavily treatable and thus impregnation is challenging. However, the focus of this study was to treat European oak with a new fire retardant based on an in-situ calcium oxalate deposition. Thin oak specimens with a thickness of 4 mm were investigated with two various formulations of aqueous salt solutions (potassium oxalate and calcium chloride, and potassium oxalate and calcium acetate) to obtain an in-situ mineralization of calcium oxalate during a two-step impregnation process. The uptake, the distribution, and the penetration of the salts for both applied formulations were investigated. Additionally, fire retardant properties were investigated in a single flame source test. It could be demonstrated that an acceptable degree of treatability was achieved for both applied formulations. The fire retardancy of the so mineralized material was clearly improved. Synergetic effects which might be caused by the reaction side products of the various formulations were found to be neglectable.


Holzforschung ◽  
2019 ◽  
Vol 73 (11) ◽  
pp. 1047-1050 ◽  
Author(s):  
Tom Franke ◽  
Thomas Volkmer

Abstract European beech (Fagus sylvatica L.) was impregnated in a two-step process with aqueous solutions of potassium oxalate and calcium chloride successively. These compounds are intended to react in situ to the water-insoluble salt calcium oxalate and the reaction by-product potassium chloride. In order to assess the treatability, the solid uptake after the first impregnation and after the treatment was examined. The fixation of the precipitated salts was measured in leaching tests according to the European standard EN 84. The reaction to fire of mineralized beech was tested following the standard ISO 11925-2. A weight percentage gain of appr. 35% indicates a sucessful treatment of the beech with the mineralization agents. The weight percentage gain after leaching indicates a sufficient fixation of calcium oxalate in the wood. Furthermore, results from flammability tests indicate improved fire resistance due to the mineralization.


2021 ◽  
pp. 2100384
Author(s):  
Mateus Lenz Leite ◽  
Antoine Viard ◽  
Dušan Galusek ◽  
Günter Motz
Keyword(s):  

2019 ◽  
Vol 49 (2) ◽  
pp. 119-126 ◽  
Author(s):  
Yusuf Yivlik ◽  
Nilgun Kizilcan ◽  
Ahmet Akar

Purpose Cyclohexanone–formaldehyde resin (CFR) was in situ modified with isocyanuric acid (ICA) in the presence of hydrochloric acid or p-toluenesulfonic acid by condensation polymerization. The purpose of this study is to produce isocyanuric acid-modified ketonic resins that have higher melting and decomposition temperature, and to use the produced resin in the production of fire-retardant polyurethane. Design/methodology/approach Two methods were used for in situ preparation of ICA-modified CFR in the presence of an acid catalyst. Method I: cyclohexanone, paraformaldehyde and ICA were mixed, and then an acid catalyst was added to form the modified CFR. Method II: ICA and formalin were mixed to produce N, N, N-trihydroxymethyl isocyanurate, and then water was removed under vacuum. The produced N, N, N-trihydroxymethyl isocyanurate solution was mixed with cyclohexanone and paraformaldehyde, then an acid catalyst was slowly added to this mixture to obtain ICA-modified CFR. Findings CFR was prepared in the presence of an acid catalyst. The product, CFR, has a dark red colour. The resulting resins have similar physical properties with the resin prepared in the presence of a basic catalyst. The solubility of ICA-modified CFR is much different than CFR in organic solvents. Research limitations/implications This study focuses on obtaining an ICA-modified ketonic resin. Cyanuric acid has the form of an enolic structure under a basic condition; therefore, it cannot give a product with formaldehyde under basic conditions. The modification experiments were carried out in acidic conditions. Practical implications This study provides technical information for in situ modification of ketonic resin in the presence of acid catalysts. The resins may also promote the adhesive strength of the coating and provide corrosion inhibition on metal surfaces for a coating. The modified resins may also be used in the field of fire-retardant polyurethane applications. Social implications These resins may be used for the preparation of non-toxic fire-retardant polyurethane foam. Polyurethane containing ICA-modified resin may exhibit better fire-retardant performance because of the incorporation of ICA molecule into the polyurethane structure. Originality/value ICA-modified CFRs have been synthesized in the presence of an acid catalyst, and the ICA-modified resin was used to produce fire-retardant polyurethane.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Sign in / Sign up

Export Citation Format

Share Document