Isocyanuric acid-modified cyclohexanone–formaldehyde resins for fire-retardant polyurethane

2019 ◽  
Vol 49 (2) ◽  
pp. 119-126 ◽  
Author(s):  
Yusuf Yivlik ◽  
Nilgun Kizilcan ◽  
Ahmet Akar

Purpose Cyclohexanone–formaldehyde resin (CFR) was in situ modified with isocyanuric acid (ICA) in the presence of hydrochloric acid or p-toluenesulfonic acid by condensation polymerization. The purpose of this study is to produce isocyanuric acid-modified ketonic resins that have higher melting and decomposition temperature, and to use the produced resin in the production of fire-retardant polyurethane. Design/methodology/approach Two methods were used for in situ preparation of ICA-modified CFR in the presence of an acid catalyst. Method I: cyclohexanone, paraformaldehyde and ICA were mixed, and then an acid catalyst was added to form the modified CFR. Method II: ICA and formalin were mixed to produce N, N, N-trihydroxymethyl isocyanurate, and then water was removed under vacuum. The produced N, N, N-trihydroxymethyl isocyanurate solution was mixed with cyclohexanone and paraformaldehyde, then an acid catalyst was slowly added to this mixture to obtain ICA-modified CFR. Findings CFR was prepared in the presence of an acid catalyst. The product, CFR, has a dark red colour. The resulting resins have similar physical properties with the resin prepared in the presence of a basic catalyst. The solubility of ICA-modified CFR is much different than CFR in organic solvents. Research limitations/implications This study focuses on obtaining an ICA-modified ketonic resin. Cyanuric acid has the form of an enolic structure under a basic condition; therefore, it cannot give a product with formaldehyde under basic conditions. The modification experiments were carried out in acidic conditions. Practical implications This study provides technical information for in situ modification of ketonic resin in the presence of acid catalysts. The resins may also promote the adhesive strength of the coating and provide corrosion inhibition on metal surfaces for a coating. The modified resins may also be used in the field of fire-retardant polyurethane applications. Social implications These resins may be used for the preparation of non-toxic fire-retardant polyurethane foam. Polyurethane containing ICA-modified resin may exhibit better fire-retardant performance because of the incorporation of ICA molecule into the polyurethane structure. Originality/value ICA-modified CFRs have been synthesized in the presence of an acid catalyst, and the ICA-modified resin was used to produce fire-retardant polyurethane.

2015 ◽  
Vol 44 (4) ◽  
pp. 198-204 ◽  
Author(s):  
N. Kizilcan ◽  
B. Erson

Purpose – This paper aims to report the synthesis of resins having fluorescence properties, with the help of phenylacetylene (PhAc) by one-step method of in situ modification of ketonic resin. Cyclohexanone-formaldehyde resin (CFR) and acetophenone formaldehyde resin (AFR) were in situ modified with PhAc, in presence of sodium hydroxide (NaOH) by condensation polymerisation. Design/methodology/approach – Ketone, formalin and phenylacetylene were mixed and then 20% aqueous NaOH solution was added to produce the phenylacethylene modified ketonic resin. The solubility, molecular weight and thermal properties of the products were investigated. Findings – These new PhAc-modified ketonic resins (PAc-CFR and PAc-AFR) have fluorescence properties. Research limitations/implications – This study focuses on obtaining a fluorescence resin using a cyclohexanone, acetophenone and PhAc monomer which is an insulator. Practical implications – This study provides technical information for the synthesis of fluorescence comonomers. The modified resins contain acetylene groups. A chemical redox or radical system can be used to polymerise these acetylene groups and resins with much higher molecular weight. The resins may also promote the adhesive strength of a coating and corrosion inhibition to metal surfaces of a coating. Social implications – The resins will be used for the preparation of AB- and ABA-type block copolymers. These block copolymers may exhibit different properties due to incorporation of monomer into the block copolymer structure. Originality/value – PAc-CFR and PAc-AFR have been synthesised in the presence of a basic catalyst. Higher solubility and fluorescence intensity of the modified ketonic resins may increase their applications in the field of electroactive polymers and open new areas. These comonomers have fluorescence property.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Selda Sert ◽  
Nilgün Kızılcan

Purpose Cyclohexanone-formaldehyde resin (CFR) was in situ modified with olive pomace (OP) in the presence of sodium hydroxide. The purpose of this study is to produce eco-friendly OP modified cyclohexanone composite resins (OPCFCR) with a one-step method that has higher condensation reaction temperature than CFR. The water absorption properties, gloss value and cross-cut adhesion properties of the product were investigated. Design/methodology/approach Cyclohexanone, formalin (37% aqueous solution) and tannin were mixed and 20% aqueous NaOH solution was added to produce the resin. OP has environmentally friendly bio-based lignin, cellulose and phenolic compounds and the OP structure has been incorporated into the structure of the CFR resin during the in situ modification, such as resole resin and polysaccharide. The weights of pomace were used as 5% and 10% of the weight of cyclohexanone in cyclohexanone-formaldehyde composite resins, respectively. Findings There is an improvement in the properties of the OPCFCR produced from an agricultural waste that is very abundant in Gulf of Edremit region of Balikesir. The OPCFCRs were soluble in common organic solvents. The product OPCFCR has a dark red-brown color. Research limitations/implications The reaction mixture must be stirred continuously. Subsequently, 37% formalin was added dropwise in total while refluxing. The amount of aqueous NaOH solution is limited as the formed resin may become insoluble in common organic solvents. At the end of the reaction, a water-insoluble resin is obtained. Practical implications This study provides the application of ketonic resins. The OPCFCR containing phenolic groups may also promote the adhesive strength of a coating. Social implications These resins may be used for the preparation of adhesive. OP, with a large amount of catechol groups, was considered for reducing the formaldehyde emission level on the adhesive system. Originality/value OPCFCR has been synthesized in the presence of a base catalyst. Environmental and ecological concerns have increased the attention paid by chemical industry to renewable raw materials.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 168
Author(s):  
Caroline Akinyi ◽  
Jimmy Longun ◽  
Siqi Chen ◽  
Jude O. Iroh

Polyimide-graphene composites were synthesized by in-situ condensation polymerization and the thermal stability and decomposition behavior of the composites were studied. Polyimides, because of their aromatic backbone, are a class of fire-retardant polymers. Their high char retention ≥50% at testing temperatures ≥600 °C makes them thermally stable polymers. The effect of nanographene sheets on the decomposition behavior of polyimide is presented in this paper. It is shown that the reinforcement of polyimide with nanographene sheets significantly decreased the rate of decomposition of polyimide and increased the char retention of the composite. Thermogravimetric analysis data were used to assess the thermal stability, rate of mass loss and predicted limiting oxygen index of the neat polyimide and composites. Results obtained showed around a 43% decrease in the rate of polyimide degradation at 50 wt.% graphene loading. The limiting oxygen index of the polyimide nanocomposite was calculated by using the char retention, and it was found to increase by up to 24% at 50 wt.% graphene loading over that for the neat matrix.


2019 ◽  
Vol 49 (2) ◽  
pp. 96-101
Author(s):  
Nilgun Kızılcan ◽  
Selda Sert

Purpose Cyclohexanone-formaldehyde resin (CFR) was in situ modified with tannin (T) in the presence of sodium hydroxide. The purpose of this study is to produce eco-friendly tannin-modified cyclohexanone resins (TCFR) with a one-step method that has higher decomposition temperature than CFR. The solubility, molecular weight and thermal properties of the product were investigated. Design/methodology/approach Cyclohexanone, formalin (37 per cent aqueous solution) and tannin were mixed and 20 per cent aqueous NaOH solution was added to produce the resin. Tannin has environmentally friendly bio-based phenolic compounds that the tannin structure has been incorporated into the structure of the cyclohexanone formaldehyde resin during the in situ modification of resin, such as resole resin. Findings The improvement of the properties of the TCFRs produced from condensed tannin. TCFRs were soluble in common organic solvents. The product TCFR has a dark red colour. Research limitations/implications The reaction mixture must be stirred continuously. Subsequently, 37 per cent formalin was added drop-wise in total while refluxing. The amount of aqueous NaOH solution of it is limited, as the formed resin may become insoluble in common organic solvents. At the end of the reaction, a water-soluble resin is obtained. Then, the water of water phase was removed from TCFR reaction system, successively by evaporating with rotary evaporator. Practical implications This study provides the application of ketonic resins. The TCFR containing tannin groups may also promote the adhesive strength of a coating. Social implications These resins may be used for the preparation of adhesive. Condensed tannin, with a large amount of Catechol groups was considered for reducing the formaldehyde emission level on the adhesive system. Originality/value TCFR has been synthesised in the presence of a base catalyst. Environmental and ecological concerns have increased the attention paid by chemical industry to renewable raw materials.


2015 ◽  
Vol 8 (3) ◽  
pp. 2197-2221
Author(s):  
Theraviyum Chithambarathanu ◽  
M. Darathi ◽  
J. DaisyMagdaline ◽  
S. Gunasekaran

The molecular vibrations of Trichloro isocyanuric acid (C3Cl3N3O3) and Trithio cyanuric acid (C3H3N3S3) have been investigated in polycrystalline sample at room temperature by Fourier Transform Infrared (FT-IR) and FT-Raman spectroscopies in the region 4000-450 cm-1 and 4000-50 cm-1 respectively, which provide a wealth of structural information about the molecules. The spectra are interpreted with the aid of normal co-ordinate analysis following full structure optimization and force field calculations based on density functional theory   (DFT) using standard B3LYP / 6-311++ G (d, p) basis set for investigating the structural and spectroscopic properties. The vibrational frequencies are calculated and the scaled values are compared with experimental FT-IR and FT-Raman spectra. The scaled theoretical wave numbers shows very good agreement with experimental ones. The complete vibrational assignments are performed on the basis of potential energy distribution (PED) of vibrational modes, calculated with scaled quantum (SQM) method. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that change in electron density (ED) in σ* and π* anti-bonding orbitals and second order delocalization   energy (E2) confirm the occurrence of Intra molecular Charge Transfer (ICT) within the molecule. The thermodynamic properties like heat capacity, entropy, enthalpy and zero point energy have been calculated for the molecule. The frontier molecular orbitals have been visualized and the HOMO-LUMO energy gap has been calculated. The Molecular Electrostatic Potential (MEP) analysis reveals the sites for electrophilic attack and nucleophilic reactions in the molecule.


1998 ◽  
Vol 88 (6) ◽  
pp. 1111-1115 ◽  
Author(s):  
Kalman Kovacs ◽  
Eva Horvath ◽  
Lucia Stefaneanu ◽  
Juan Bilbao ◽  
William Singer ◽  
...  

✓ The authors report on the morphological features of a pituitary adenoma that produced growth hormone (GH) and adrenocorticotropic hormone (ACTH). This hormone combination produced by a single adenoma is extremely rare; a review of the available literature showed that only one previous case has been published. The tumor, which was removed from a 62-year-old man with acromegaly, was studied by histological and immunocytochemical analyses, transmission electron microscopy, immunoelectron microscopy, and in situ hybridization. When the authors used light microscopy, the tumor appeared to be a bimorphous mixed pituitary adenoma composed of two separate cell types: one cell population synthesized GH and the other ACTH. The cytogenesis of pituitary adenomas that produce more than one hormone is obscure. It may be that two separate cells—one somatotroph and one corticotroph—transformed into neoplastic cells, or that the adenoma arose in a common stem cell that differentiated into two separate cell types. In this case immunoelectron microscopy conclusively demonstrated ACTH in the secretory granules of several somatotrophs. This was associated with a change in the morphological characteristics of secretory granules. Thus it is possible that the tumor was originally a somatotropic adenoma that began to produce ACTH as a result of mutations that occurred during tumor progression.


2014 ◽  
Vol 81 (3) ◽  
pp. 1024-1031 ◽  
Author(s):  
Bhagyalakshmi Kalidass ◽  
Muhammad Farhan Ul-Haque ◽  
Bipin S. Baral ◽  
Alan A. DiSpirito ◽  
Jeremy D. Semrau

ABSTRACTIt is well known that copper is a key factor regulating expression of the two forms of methane monooxygenase found in proteobacterial methanotrophs. Of these forms, the cytoplasmic, or soluble, methane monooxygenase (sMMO) is expressed only at low copper concentrations. The membrane-bound, or particulate, methane monooxygenase (pMMO) is constitutively expressed with respect to copper, and such expression increases with increasing copper. Recent findings have shown that copper uptake is mediated by a modified polypeptide, or chalkophore, termed methanobactin. Although methanobactin has high specificity for copper, it can bind other metals, e.g., gold. Here we show that inMethylosinus trichosporiumOB3b, sMMO is expressed and active in the presence of copper if gold is also simultaneously present. Such expression appears to be due to gold binding to methanobactin produced byM. trichosporiumOB3b, thereby limiting copper uptake. Such expression and activity, however, was significantly reduced if methanobactin preloaded with copper was also added. Further, quantitative reverse transcriptase PCR (RT-qPCR) of transcripts of genes encoding polypeptides of both forms of MMO and SDS-PAGE results indicate that both sMMO and pMMO can be expressed when copper and gold are present, as gold effectively competes with copper for binding to methanobactin. Such findings suggest that under certain geochemical conditions, both forms of MMO may be expressed and activein situ. Finally, these findings also suggest strategies whereby field sites can be manipulated to enhance sMMO expression, i.e., through the addition of a metal that can compete with copper for binding to methanobactin.


2013 ◽  
Vol 815 ◽  
pp. 367-370 ◽  
Author(s):  
Xiao Qiu Song ◽  
Yue Xia Li ◽  
Jing Wen Wang

Hexadecane microcapsule phase change materials were prepared by the in-situ polymerization method using hexadecane as core materials, urea-formaldehyde resin and urea-formaldehyde resin modified with melamine as shell materials respectively. Effect of melamine on the properties of microcapsules was studied by FTIR, biomicroscopy (UBM), TGA and HPLC. The influences of system concentration, agitation speed and mass ratio of wall to core were also investigated. The results indicated that hexadecane was successfully coated by the two types of shell materials. The addition of melamine into the urea-formaldehyde resin microcapsule reduced microcapsule particle size and microencapsulation efficiency. The influences of factors such as system concentration, agitation speed and mass ratio of wall to core to different wall materials microcapsules presented different variety trends of the microcapsule particle size.


2012 ◽  
Vol 78 (20) ◽  
pp. 7467-7475 ◽  
Author(s):  
Amy Apprill ◽  
Heather Q. Marlow ◽  
Mark Q. Martindale ◽  
Michael S. Rappé

ABSTRACTRelationships between corals and specific bacterial associates are thought to play an important role in coral health. In this study, the specificity of bacteria associating with the coralPocillopora meandrinawas investigated by exposing coral embryos to various strains of cultured marine bacteria, sterile seawater, or raw seawater and examining the identity, density, and location of incorporated cells. The isolates utilized in this experiment included members of the Roseobacter and SAR11 clades of theAlphaproteobacteria, aPseudoalteromonasspecies of theGammaproteobacteria, and aSynechococcusspecies of theCyanobacteriaphylum. Based on terminal restriction fragment length polymorphism analysis of small-subunit rRNA genes, similarities in bacterial communities associated with 170-h-old planulae were observed regardless of treatment, suggesting that bacteria may have been externally associated from the outset of the experiment. Microscopic examination ofP. meandrinaplanulae by fluorescencein situhybridization with bacterial and Roseobacter clade-specific oligonucleotide probes revealed differences in the densities and locations of planulae-associated cells. Planulae exposed to either raw seawater or strains ofPseudoalteromonasand Roseobacter harbored the highest densities of internally associated cells, of which 20 to 100% belonged to the Roseobacter clade. Planulae exposed to sterile seawater or strains of the SAR11 clade andSynechococcusdid not show evidence of prominent bacterial associations. Additional analysis of the raw-seawater-exposed planulae via electron microscopy confirmed the presence of internally associated prokaryotic cells, as well as virus-like particles. These results suggest that the availability of specific microorganisms may be an important factor in the establishment of coral-bacterial relationships.


2010 ◽  
Vol 1 (4) ◽  
pp. 344-357 ◽  
Author(s):  
V. Richter‐Trummer ◽  
P.M.G.P. Moreira ◽  
S.D. Pastrama ◽  
M.A.P. Vaz ◽  
P.M.S.T. de Castro

PurposeThe purpose of this paper is to develop a methodology for in situ stress intensity factor (SIF) determination that can be used for the analysis of cracked structures. The technique is based on digital image correlation (DIC) combined with an overdetermined algorithm.Design/methodology/approachThe linear overdeterministic algorithm for calculating the SIF based on stress values around the crack tip is applied to a strain field obtained by DIC.FindingsAs long as the image quality is sufficiently high, a good accuracy can be obtained for the measured SIF. The crack tip can be automatically detected based on the same strain field. The use of the strain field instead of the displacement field, eliminates problems related to the rigid body motion of the analysed structure.Practical implicationsIn future works, based on the applied techniques, the SIF of complex cracked plane stress structures can be accurately determined in real engineering applications.Originality/valueThe paper demonstrates application of known techniques, refined for other applications, also the use of stress field for SIF overdeterministic calculations.


Sign in / Sign up

Export Citation Format

Share Document