fire retardant properties
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 43)

H-INDEX

18
(FIVE YEARS 4)

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 66
Author(s):  
Mădălina Ioana Necolau ◽  
Celina Maria Damian ◽  
Radu Claudiu Fierăscu ◽  
Anita-Laura Chiriac ◽  
George Mihail Vlăsceanu ◽  
...  

Nanostructures are more and more evolved through extensive research on their functionalities; thus, the aim of this study was to obtain layered clay–graphene oxide nanohybrids with application as reinforcing agents in polyurea nanocomposites with enhanced thermal–mechanical and fire-retardant properties. Montmorillonite (MMT) was combined with graphene oxide (GO) and amine functionalized graphene oxide (GOD) through a new cation exchange method; the complex nanostructures were analyzed through FTIR and XPS to assess ionic interactions between clay layers and GO sheets by C1s deconvolution and specific C sp3, respective/ly, C-O secondary peaks appearance. The thermal decomposition of nanohybrids showed a great influence of MMT layers in TGA, while the XRD patterns highlighted mutual MMT and GO sheets crystalline-structure disruption by the d (002) shift 2θ = 6.29° to lower values. Furthermore, the nanohybrids were embedded in the polyurea matrix, and the thermo-mechanical analysis gave information about the stiffness of MMT–GO nanocomposites, while GOD insertion within the MMT layers resulted in a 30 °C improvement in the Tg of hard domains, as shown in the DSC study. The micro CT analysis show good dispersion of inorganic structures within the polyurea, while the SEM fracture images revealed smooth surfaces. Cone calorimetry was used to evaluate fire-retardant properties through limiting the oxygen index, and MMT–GOD based nanocomposites showed a 35.4% value.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4373
Author(s):  
Mohd Salahuddin Mohd Basri ◽  
Faizal Mustapha ◽  
Norkhairunnisa Mazlan ◽  
Mohd Ridzwan Ishak

Compressive strength is an important property in construction material, particularly for thermal insulation purposes. Although the insulation materials possess high fire-retardant characteristics, their mechanical properties are relatively poor. Moreover, research on the correlation between fire-retardant and compressive strength of rice husk ash (RHA)-based geopolymer binder (GB) is rather limited. In addition, previous studies on RHA-based GB used the less efficient one-factor-at-a-time (OFAT) approach. In understanding the optimum value and significant effect of factors on the compressive strength, it was deemed necessary to employ statistical analysis and a regression coefficient model (mathematical model). The objective of the study is to determine the effect of different material behavior, namely brittle and ductile, on the compressive strength properties and the optimum material formulation that can satisfy both compressive strength and fire-retardant properties. The factors chosen for this study were the rice husk ash/activated alkaline solution (RHA/AA) ratio and the sodium hydroxide (NaOH) concentration. Compressive strength and fire-retardant tests were conducted as part of the experiments, which were designed and analyzed using the response surface methodology (RSM). The microstructure of geopolymer samples was investigated using a scanning electron microscope (SEM). Results showed that RHA/AA ratio was highly significant (p < 0.000) followed by NaOH concentration (p < 0.024). When the RHA/AA ratio was at 0.7 to 0.8 and the NaOH concentration was between 12 and 14 M, high compressive strength above 28 MPa was recorded. Optimum compressive strength of approximately 47 MPa was achieved when the RHA/AA ratio and NaOH concentration were 0.85 and 14 M, respectively. Brittle samples with low Si/Al ratio of 88.95 were high in compressive strength, which is 33.55 MPa, and showed a high degree of geopolymerization. Inversely, ductile samples showed low compressive strength and degree of geopolymerization. Water content within the geopolymer binder had a major effect on its fire-retardant properties. Semi-ductile GB showed the best fire-retardant properties, followed by semi-brittle and brittle GB. Using RHA as an aluminosilicate source has proven to be a promising alternative.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4214
Author(s):  
Javier Chavarro Gomez ◽  
Rabitah Zakaria ◽  
Min Min Aung ◽  
Mohd Noriznan Mokhtar ◽  
Robiah Yunus

In the effort to produce renewable and biodegradable polymers, more studies are being undertaken to explore environmentally friendly sources to replace petroleum-based sources. The oil palm industry is not only the biggest vegetable-oil producer from crops but also one the biggest producers of residual oil that cannot be used for edible purposes due to its low quality. In this paper the development of biopolymers from residual palm oil, residual palm oil with 10% jatropha oil, and residual palm oil with 10% algae oil as additives were explored. Polyols from the different oils were prepared by epoxydation with peroxyacetic acid and alcoholysis under the same conditions and further reacted with poly isocyanate to form polyurethanes. Epoxidized oils, polyols and polyurethanes were analyzed by different techniques such as TGA, DSC, DMA, FTIR and H-NMR. Overall, although the IV of algae oil is slightly higher than that of jatropha oil, the usage of algae oil as additive into the residual palm oil was shown to significantly increase the hard segments and thermal stability of the bio polyurethane compared to the polymer with jatropha oil. Furthermore, when algae oil was mixed with the residual palm oil, it was possible to identify phosphate groups in the polyol which might enhance the fire-retardant properties of the final biopolymer.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3747
Author(s):  
Mohd Salahuddin Mohd Basri ◽  
Faizal Mustapha ◽  
Norkhairunnisa Mazlan ◽  
Mohd Ridzwan Ishak

Geopolymer using aluminosilicate sources, such as fly ash, metakaolin and blast furnace slag, possessed excellent fire-retardant properties. However, research on the fire-retardant properties and thermal properties of geopolymer coating using rice husk ash (RHA) is rather limited. Additionally, the approach adopted in past studies on geopolymer coating was the less efficient one-factor-at-a-time (OFAT). A better approach is to employ statistical analysis and a regression coefficient model (mathematical model) in understanding the optimum value and significant effect of factors on fire-retardant and thermal properties of the geopolymer coating. This study aims to elucidate the significance of rice husk ash/activated alkaline solution (RHA/AA) ratio and NaOH concentration on the fire-retardant and thermal properties of RHA-based geopolymer coating, determine the optimum composition and examine the microstructure and element characteristics of the RHA-based geopolymer coating. The factors chosen for this study were the RHA/AA ratio and the NaOH concentration. Rice husk was burnt at a temperature of approximately 600 °C for 24 h to produce RHA. The response surface methodology (RSM) was used to design the experiments and conduct the analyses. Fire-retardant tests and thermal and element characteristics analysis (TGA, XRD, DSC and CTE) were conducted. The microstructure of the geopolymer samples was investigated by using a scanning electron microscope (SEM). The results showed that the RHA/AA ratio had the strongest effect on the temperature at equilibrium (TAE) and time taken to reach 300 °C (TT300). For the optimization process using RSM, the optimum value for TAE and TT300 could be attained when the RHA/AA ratio and NaOH concentration were 0.30 and 6 M, respectively. SEM micrographs of good fire-resistance properties showed a glassy appearance, and the surface coating changed into a dense geopolymer gel covered with thin needles when fired. It showed high insulating capacity and low thermal expansion; it had minimal mismatch with the substrate, and the coating had no evidence of crack formation and had a low dehydration rate. Using RHA as an aluminosilicate source has proven to be a promising alternative. Using it as coating materials can potentially improve fire safety in the construction of residential and commercial buildings.


2021 ◽  
Author(s):  
Teboho Clement Mokhena ◽  
Emmanuel Rotimi Sadiku ◽  
Suprakas Sinha Ray ◽  
Mokgaotsa Jonas Mochane ◽  
Tshwafo Elias Motaung

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1102
Author(s):  
Cristian Bolaño ◽  
Sabrina Palanti ◽  
Luigi Benni ◽  
Diego Moldes

Several treatments of wood, based on laccase assisted grafting, were evaluated in this paper. Firstly, the efficacy of lignosulfonate and kraft lignin from Eucalyptus spp. as a wood preservative was assessed. Both ligno products were anchored to wood surfaces via laccase treatment in order to avoid leaching. Moreover, some of these wood preservative treatments were completed with the addition of silver nanoparticles. For comparison, a commercial product was also analyzed in terms of its fungal decay resistance during surface application, in accordance to use class 3, CEN EN 335. Secondly, the anchoring of a flame retardant based on tetrabromobisphenol-A (TBBPA) was attempted, to limit the dispersion of this toxic substance from treated wood. In both cases, kraft lignin and lignosulfonate showed an improvement in wood durability, even after leaching. However, the addition of silver nanoparticles did not improve the efficacy. On the other hand, the efficacy of TBBPA as a flame retardant was not improved by grafting it with laccase treatment or by adding O2, a co-factor of laccase.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tom Franke ◽  
Thomas Volkmer

Abstract Within the focus to apply substances for wood protections, here fire retardants, with low hazardous and low environmental impact is of interest. Additionally, European oak is an attractive species for various interior and exterior applications. However, oak is classified as very heavily treatable and thus impregnation is challenging. However, the focus of this study was to treat European oak with a new fire retardant based on an in-situ calcium oxalate deposition. Thin oak specimens with a thickness of 4 mm were investigated with two various formulations of aqueous salt solutions (potassium oxalate and calcium chloride, and potassium oxalate and calcium acetate) to obtain an in-situ mineralization of calcium oxalate during a two-step impregnation process. The uptake, the distribution, and the penetration of the salts for both applied formulations were investigated. Additionally, fire retardant properties were investigated in a single flame source test. It could be demonstrated that an acceptable degree of treatability was achieved for both applied formulations. The fire retardancy of the so mineralized material was clearly improved. Synergetic effects which might be caused by the reaction side products of the various formulations were found to be neglectable.


Author(s):  
T.A. Budykina ◽  
◽  
E.B. Anosova ◽  

The results are presented concerning the experimental studies of the behavior of fire-retardant seals produced by the Ogneza group of companies under thermal exposure up to 1000 °C, obtained by the method of synchronous thermal analysis (thermogravimetry together with the differential scanning calorimetry). Incombustible properties of the M-СORE (NG) seal were confirmed, which showed a decrease in the mass of the material when heated to 1000 °C by 11%, which is due to the mineral composition of the sample (a silica-based material). High thermal stability was shown by the fire-fighting seal M-CORE, the decrease in the mass of the sample of which, after reaching a temperature of 555 °C, stops at 37 %, which indicates the formation of an ash residue. Thermal sealing tape LTU, as a result of the temperature heating starting from a mark of 192 °C, uniformly was losing mass up to a total value of 82 %. The experiment established the sealant swelling. According to the experimental data obtained, the samples M-CORE (NG) confirmed the fire-retardant properties declared by the manufacturer. For the selection of heat-resistant materials that can withstand significant temperature loads during the operation of units and mechanisms, for electrical and thermal insulation, for fire protection of air ducts, equipment, structures, the advantages, and reliability of these seals are obvious. The results of the study (the temperature of the beginning of an intensive decrease in mass, the temperature of the onset of thermal effects accompanying a decrease in mass, the behavior of materials under thermal exposure) can be considered when designing heat and electrical insulation, fire protection of production processes, as well as when determining the level of fire risk of the production facilities.


2021 ◽  
Vol 1038 ◽  
pp. 468-479
Author(s):  
Olga Skorodumova ◽  
Olena Tarakhno ◽  
Olena Chebotaryova ◽  
Oleg Bezuglov ◽  
Fatih Mehmet Emen

Based on the generalization of research results on the processes of obtaining SiO2 sols using tetraethoxysilane and ethyl silicates, the main factors influencing the elasticity of silica coatings on cotton fabrics and their fire-retardant properties are considered. The possibility of forming covalent bonds between the functional groups of cellulose, gel coating and flame retardant layer is considered, which explains the strong fixation of a thin layer of coating on the fibers of the fabric and improve its fire protection. The use of the developed compositions for fire-retardant elastic coatings based on ethyl silicate allows to increase the time of complete burning of cotton from 30s (untreated fabric) to 600s (treated with binary coating).


Sign in / Sign up

Export Citation Format

Share Document