scholarly journals Dynamic electro‐mechanical analysis of highly conductive particle‐elastomer composites

2020 ◽  
pp. 50377
Author(s):  
Simon P. Stier ◽  
Detlev Uhl ◽  
Peer Löbmann ◽  
Holger Böse
Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 43 ◽  
Author(s):  
Bolesław Szadkowski ◽  
Anna Marzec ◽  
Przemysław Rybiński ◽  
Waldemar Maniukiewicz ◽  
Marian Zaborski

This study presents the preparation and characterization of new organic-inorganic pigments based on aluminum-magnesium hydroxycarbonate (LH) and azo dyes. Solvent resistance studies, XRD, SEM, and TGA confirmed the successful formation of hybrid pigments, which were characterized in terms of their physicochemical properties. The new hybrid pigments were applied in acrylonitrile-butadiene (NBR) and ethylene-propylene (EPM) rubber composites and cured with sulfur and peroxide curing systems, respectively. The mechanical properties, dispersion quality, and flame-retardant properties of the NBR/hybrid and EPM/hybrid pigment composites were determined by dynamic mechanical analysis (DMA), SEM, and microscale combustion calorimetry (MCC). Complex experimental investigations revealed that the layered nature of hybrid pigments could improve the barrier ability and flame retardancy of elastomer composites. In comparison to unmodified aluminum-magnesium hydroxycarbonate, the modified LH dye structures contributed to significantly decrease the heat release rate and the total heat release of the NBR and EPM composites, offering a new approach to imparting low flammability to elastomer materials.


2019 ◽  
Vol 3 (2) ◽  
pp. 31 ◽  
Author(s):  
Hector Aguilar-Bolados ◽  
Ahirton Contreras-Cid ◽  
Andronico Neira-Carrillo ◽  
Miguel Lopez-Manchado ◽  
Mehrdad Yazdani-Pedram

Electrically conducting elastomer composites based on natural rubber and reduced graphene oxide (rGO) is reported. These composites were prepared by a latex method and an easy washing process. The latex method consists of the mixing of an aqueous suspension of rGO, stabilized by sodium dodecyl sulfate and pre-vulcanized natural rubber, followed by solvent casting. The percolation threshold of composites was estimated at 1.54 wt.% of rGO. The washing process allowed elimination of the surfactant completely from nanocomposites. The absence of surfactant in nanocomposites was demonstrated by Raman spectroscopy and dynamo-mechanical analysis. The surfactant-free nanocomposites showed improved mechanical and electrical properties.


Author(s):  
B. M. Culbertson ◽  
M. L. Devinev ◽  
E. C. Kao

The service performance of current dental composite materials, such as anterior and posterior restoratives and/or veneer cements, needs to be improved. As part of a comprehensive effort to find ways to improve such materials, we have launched a broad spectrum study of the physicochemical and mechanical properties of photopolymerizable or visible light cured (VLC) dental composites. The commercially available VLC materials being studied are shown in Table 1. A generic or neat resin VLC system is also being characterized by SEM and TEM, to more fully understand formulation variables and their effects on properties.At a recent dental research meeting, we reported on the differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) characterization of the materials in Table 1. It was shown by DSC and DMA that the materials are substantially undercured by commonly used VLC techniques. Post curing in an oral cavity or a dry environment at 37 to 50°C for 7 or more hours substantially enhances the cure of the materials.


2016 ◽  
Vol 44 (3) ◽  
pp. 150-173 ◽  
Author(s):  
Mehran Motamedi ◽  
Saied Taheri ◽  
Corina Sandu

ABSTRACT For tire designers, rubber friction is a topic of pronounced practical importance. Thus, development of a rubber–road contact model is of great interest. In this research, to predict the effectiveness of the tread compound in a tire as it interacts with the pavement, the physics-based multiscale rubber-friction theories developed by B. Persson and M. Klüppel were studied. The strengths of each method were identified and incorporated into a consolidated model that is more comprehensive and proficient than any single, existing, physics-based approach. In the present work, the friction coefficient was estimated for a summer tire tread compound sliding on sandpaper. The inputs to the model were the fractal properties of the rough surface and the dynamic viscoelastic modulus of rubber. The sandpaper-surface profile was measured accurately using an optical profilometer. Two-dimensional parameterization was performed using one-dimensional profile measurements. The tire tread compound was characterized via dynamic mechanical analysis. To validate the friction model, a laboratory-based, rubber-friction test that could measure the friction between a rubber sample and any arbitrary rough surface was designed and built. The apparatus consisted of a turntable, which can have the surface characteristics of choice, and a rubber wheel in contact with the turntable. The wheel speed, as well as the turntable speed, could be controlled precisely to generate the arbitrary values of longitudinal slip at which the dynamic coefficient of friction was measured. The correlation between the simulation and the experimental results was investigated.


Author(s):  
Flavia Bastos ◽  
ALEXANDRE SCARI ◽  
BRUNO GONCALVES SCHRODER e SOUZA ◽  
Fabiane Grazielle Silva

Sign in / Sign up

Export Citation Format

Share Document