Effects of polyphosphoric acid ( PPA ), styrene‐butadiene‐styrene ( SBS ), or rock asphalt on the performance of desulfurized rubber modified asphalt

2021 ◽  
pp. 50621
Author(s):  
Hengbin Liu ◽  
Zhengqi Zhang ◽  
Zhuolin Li ◽  
Naiqiang Li
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Xueqian Li ◽  
Jianzhong Pei ◽  
Jiujian Shen ◽  
Rui Li

The high-performance asphalt materials are used to replace the ordinary road asphalt that cannot meet the requirements of natural environment and traffic situation, which is the effective way to solve poor asphalt pavement durability. In this paper, polyphosphoric acid- (PPA-) modified asphalt and polyphosphoric acid (PPA)/styrene-butadiene-styrene (SBS) composite-modified asphalt with different PPA content were prepared by using two-type asphalt. The effect of PPA modifier on asphalt was analyzed by using the creep elastic recovery rate, accumulating strain and creep modulus tests. The results showed that asphalt types and the PPA could significantly improve the elastic recovery rate of asphalt, reduce the cumulative strain and creep stiffness of the viscosity part, improve the high-temperature performance, and reduce the permanent deformation of the asphalt under repeated load. The high-temperature performance and low-temperature performance of PPA-modified asphalt were studied by the chemical and physical modification techniques. The advantages of modified asphalt are well developed while reducing the price of it, which has important technical and economic significance.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 797
Author(s):  
Xiaoguang Pei ◽  
Weiyu Fan

Oil sands de-oiled asphalt (OSDOA) has become a bottleneck for refineries due to its enormous production and huge landfill costs. Applying OSDOA as a modifier is an effective way to reduce environmental pollution and disposal cost. In this study, the influences of OSDOA and polyphosphoric acid (PPA) compound modification on styrene-butadiene-styrene (SBS)-modified binder were investigated. The high-temperature rutting resistance, low-temperature anti-crack performance and fatigue resistance were obtained by dynamic shear rheometer (DSR) and bending beam rheometer (BBR) test. Storage stability and microstructure were also investigated by storage test and Fourier-transform infrared (FTIR) spectroscopy. The results demonstrated that the compound modification of OSDOA/PPA dramatically enhanced the deformation resistance of SBS-modified binder and reduced its low-temperature cracking resistance. The anti-fatigue performance was also decreased. Moreover, the combined effect of OSDOA and PPA could produce composite modified asphalt with excellent storage stability, which was verified by desirable fluorescence images. Furthermore, both physical and chemical interactions coexisted during the OSDOA/PPA compound modification process. Consequently, the optimal doses of OSDOA and PPA were determined to be 10 wt% and 1.0 wt%, considering of the balance between high- and low-temperature characteristics and storage stability of composite modified asphalt.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2249
Author(s):  
Bei Chen ◽  
Fuqiang Dong ◽  
Xin Yu ◽  
Changjiang Zheng

In order to solve the problems caused by asphalt diseases and prolong the life cycle of asphalt pavement, many studies on the properties of modified asphalt have been conducted, especially polyurethane (PU) modified asphalt. This study is to replace part of the styrene-butadiene-styrene (SBS) modifier with waste polyurethane (WP), for preparing WP/SBS composite modified asphalt, as well as exploring its properties and microstructure. On this basis, this paper studied the basic performance of WP/SBS composite modified asphalt with a conventional performance test, to analyze the high- and low-temperature rheological properties, permanent deformation resistance and storage stability of WP/SBS composite modified asphalt by dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. The microstructure of WP/SBS composite modified asphalt was also observed by fluorescence microscope (FM) and Fourier transform infrared spectroscopy (FTIR), as well as the reaction between WP and asphalt. According to the results of this study, WP can replace SBS as a modifier to prepare WP/SBS composite modified asphalt with good low-temperature resistance, whose high-temperature performance will be lower than that of SBS modified asphalt. After comprehensive consideration, 4% SBS content and 15% WPU content (4 S/15 W) are determined as the suitable types of WPU/SBS composite modified asphalt.


2021 ◽  
Vol 1036 ◽  
pp. 459-470
Author(s):  
Hong Gang Zhang ◽  
Qiang Huai Zhang ◽  
Xue Ting Wang ◽  
Hua Tan ◽  
Li Ning Gao ◽  
...  

A styrene-butadiene-styrene triblock copolymer (SBS) was grafted with an unsaturated polar monomer (monomer A) composed of maleic anhydride (MAH) and methoxy polyethylene (MPEG) via a ring-opening reaction after epoxidizing styrene-butadiene-styrene triblock copolymer (ESBS). The microscopic changes of SBS before and after grafting has been characterized with Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS) and gel permeation chromatography (GPC). The results revealed that the monomer A was successfully grafted on SBS backbone, and the maximum graft ratio (GR) was 20.32%. To verify the compatibility between SBS and asphalt, solubility parameters and surface free energy (SFE) of SBS, grafted SBS and asphalt were measured. It was found that the solubility parameter and SFE of grafted SBS were closer to asphalt compared with SBS. It also has been confirmed from storage stability that the temperature susceptibility of grafted SBS modified asphalt was reduced in compare with SBS modified asphalt binder. As consequence, the use of grafted copolymer can be considered a suitable alternative for modification of asphalt binder in pavement.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2345 ◽  
Author(s):  
Yangsheng Ye ◽  
Gang Xu ◽  
Liangwei Lou ◽  
Xianhua Chen ◽  
Degou Cai ◽  
...  

In this study, a new type of composite modified bitumen was developed by blending styrene-butadiene-styrene (SBS) and crumb rubber (CR) with a chemical method to satisfy the durability requirements of waterproofing material in the waterproofing layer of high-speed railway subgrade. A pressure-aging-vessel test for 20, 40 and 80 h were conducted to obtain bitumen samples in different long-term aging conditions. Multiple stress creep recovery (MSCR) tests, linear amplitude scanning tests and bending beam rheometer tests were conducted on three kinds of asphalt binders (SBS modified asphalt, CR modified asphalt and SBS/CR composite modified asphalt) after different long-term aging processes, including high temperature permanent deformation performance, resistance to low temperature thermal and fatigue crack. Meanwhile, aging sensitivities were compared by different rheological indices. Results showed that SBS/CR composite modified asphalt possessed the best properties before and after aging. The elastic property of CR in SBS/CR composite modified asphalt improved the ability to resist low temperature thermal and fatigue cracks at a range of low and middle temperatures. Simultaneously, the copolymer network of SBS and CR significantly improved the elastic response of the asphalt SBS/CR modified asphalt at a range of high temperatures. Furthermore, all test results indicated that the SBS/CR modified asphalt possesses the outstanding ability to anti-aging. SBS/CR is an ideal kind of asphalt to satisfy the demand of 60 years of service life in the subgrade of high speed railway.


Sign in / Sign up

Export Citation Format

Share Document