Fine structure of the oxynticopeptic cell in the gastric glands of an elasmobranch species (Halaelurus chilensis)

1979 ◽  
Vol 193 (4) ◽  
pp. 805-821 ◽  
Author(s):  
Ivan M. Rebolledo ◽  
Juan D. Vial
1963 ◽  
Vol 16 (3) ◽  
pp. 541-577 ◽  
Author(s):  
Susumu Ito ◽  
Robert J. Winchester

A description of the cytology of the gastric mucosa is presented based upon an electron microscopic investigation of the bat stomach. The fine structure of the various cell types in this species is fundamentally similar to that of the corresponding cell types of other mammals, but the relative cell numbers and distribution are somewhat different. (a). The surface mucous cells are identified by their superficial location and by the character of their dense secretory granules. (b). The mucous neck cells are distinguished by a characteristically different appearance and distribution of their mucous granules, and by their varied shape and their location between parietal cells. (c). The parietal cells are very large and have unusually prominent secretory canaliculi and an extraordinary number of large mitochondria. (d). The chief cells are found at the base of the gastric glands and are similar in their fine structure to other zymogenic cells. They contain many large zymogen granules and have an extensively developed granular endoplasmic reticulum. The latter is sometimes aggregated in unusual, hexagonally packed straight tubules, each with twelve longitudinal rows of ribosomes uniformly spaced around its circumference and with the rows of ribosomes in precise register with those of adjoining tubules. (e). Argentaffin cells lodged between other cell types vary sufficiently in the structure of their mitochondria and the character of their specific granules to suggest that they are of more than one kind. The majority are at the base of the epithelium but some extend to the lumen and bear microvilli on their free surface.


1961 ◽  
Vol 11 (2) ◽  
pp. 349-363 ◽  
Author(s):  
A. W. Sedar ◽  
M. H. F. Friedman

The fine structure of the parietal (oxyntic) cell in the gastric glands (corpus of the stomach) of the dog was examined under conditions of active gastric acid secretion and compared with cellular structure in the non-acid-secretory (basal) state. Animals, in both acute and chronic experiments, were equipped with gastric fistulae so that gastric juice could be collected for analysis of total acidity, free acidity, volume, and pH prior to biopsy of the gastric mucosa. The specimens of mucosa were fixed in buffered OsO4 and embedded in n-butyl methacrylate and the thin sections were stained with lead hydroxide before examination in the electron microscope. A majority of parietal cells showed an alteration of fine structure during stimulation of gastric acid secretion by a number of different techniques (electrical vagal stimulation, histamine administration, or insulin injection). The changes in fine structure affected mainly the smooth surfaced vesicular elements and the intracellular canaliculi in the cytoplasm of the cell. The mitochondria also appeared to be involved to some extent. During acid secretion a greater concentration of smooth surface profiles is found adjacent to the walls of the intracellular canaliculi; other parietal cells exhibited a marked decrease in number of smooth surfaced elements. Intracellular canaliculi, always present in non-acid-secreting oxyntic cells, develop more extensively in cells of acid-secreting gastric glands. The surface area of these canaliculi is greatly increased by the elaboration of a large number of closely approximated and elongated microvilli. Still other parietal cells apparently in a different stage of the secretory cycle exhibit non-patent canaliculi lacking prominence; such cells have very few smooth surfaced vesicular elements. These morphological findings correlated with the acid-secretory state of the stomach provide evidence that the parietal cell participates in the process of acid secretion.


Author(s):  
W. H. Zucker ◽  
R. G. Mason

Platelet adhesion initiates platelet aggregation and is an important component of the hemostatic process. Since the development of a new form of collagen as a topical hemostatic agent is of both basic and clinical interest, an ultrastructural and hematologic study of the interaction of platelets with the microcrystalline collagen preparation was undertaken.In this study, whole blood anticoagulated with EDTA was used in order to inhibit aggregation and permit study of platelet adhesion to collagen as an isolated event. The microcrystalline collagen was prepared from bovine dermal corium; milling was with sharp blades. The preparation consists of partial hydrochloric acid amine collagen salts and retains much of the fibrillar morphology of native collagen.


Author(s):  
E. Horvath ◽  
K. Kovacs ◽  
G. Penz ◽  
C. Ezrin

Follicular structures, in the rat pituitary, composed of cells joined by junctional complexes and possessing few organelles and few, if any, secretory granules, were first described by Farquhar in 1957. Cells of the same description have since been observed in several species including man. The importance of these cells, however, remains obscure. While studying human pituitary glands, we have observed wide variations in the fine structure of follicular cells which may lead to a better understanding of their morphogenesis and significance.


Author(s):  
E. N. Albert

Silver tetraphenylporphine sulfonate (Ag-TPPS) was synthesized in this laboratory and used as an electron dense stain for elastic tissue (Fig 1). The procedures for the synthesis of tetraphenylporphine sulfonate and the staining method for mature elastic tissue have been described previously.The fine structure of developing elastic tissue was observed in fetal and new born rat aorta using tetraphenylporphine sulfonate, phosphotungstic acid, uranyl acetate and lead citrate. The newly forming elastica consisted of two morphologically distinct components. These were a central amorphous and a peripheral fibrous. The ratio of the central amorphous and the peripheral fibrillar portion changed in favor of the former with increasing age.It was also observed that the staining properties of the two components were entirely different. The peripheral fibrous component stained with uranyl acetate and/or lead citrate while the central amorphous portion demonstrated no affinity for these stains. On the other hand, the central amorphous portion of developing elastic fibers stained vigorously with silver tetraphenylporphine sulfonate, while the fibrillar part did not (compare figs 2, 3, 4). Based upon the above observations it is proposed that developing elastica consists of two components that are morphologically and chemically different.


Sign in / Sign up

Export Citation Format

Share Document