Maximizing modern distribution of complex anatomical spatial information: 3D reconstruction and rapid prototype production of anatomical corrosion casts of human specimens

2012 ◽  
Vol 5 (6) ◽  
pp. 330-339 ◽  
Author(s):  
Jianyi Li ◽  
Lanying Nie ◽  
Zeyu Li ◽  
Lijun Lin ◽  
Lei Tang ◽  
...  
2019 ◽  
Vol 11 (15) ◽  
pp. 1811 ◽  
Author(s):  
LaForest ◽  
Hasheminasab ◽  
Zhou ◽  
Flatt ◽  
Habib

The need for accurate 3D spatial information is growing rapidly in many of today’s key industries, such as precision agriculture, emergency management, infrastructure monitoring, and defense. Unmanned aerial vehicles (UAVs) equipped with global navigation satellite systems/inertial navigation systems (GNSS/INS) and consumer-grade digital imaging sensors are capable of providing accurate 3D spatial information at a relatively low cost. However, with the use of consumer-grade sensors, system calibration is critical for accurate 3D reconstruction. In this study, ‘consumer-grade’ refers to cameras that require system calibration by the user instead of by the manufacturer or other high-end laboratory settings, as well as relatively low-cost GNSS/INS units. In addition to classical spatial system calibration, many consumer-grade sensors also need temporal calibration for accurate 3D reconstruction. This study examines the accuracy impact of time delay in the synchronization between the GNSS/INS unit and cameras on-board UAV-based mapping systems. After reviewing existing strategies, this study presents two approaches (direct and indirect) to correct for time delay between GNSS/INS recorded event markers and actual time of image exposure. Our results show that both approaches are capable of handling and correcting this time delay, with the direct approach being more rigorous. When a time delay exists and the direct or indirect approach is applied, horizontal accuracy of 1–3 times the ground sampling distance (GSD) can be achieved without either the use of any ground control points (GCPs) or adjusting the original GNSS/INS trajectory information.


Author(s):  
JIANGJIAN XIAO ◽  
HUI CHENG ◽  
FENG HAN ◽  
HARPREET SAWHNEY

This paper presents an approach to extract semantic layers from aerial surveillance videos for scene understanding and object tracking. The input videos are captured by low flying aerial platforms and typically consist of strong parallax from non-ground-plane structures as well as moving objects. Our approach leverages the geo-registration between video frames and reference images (such as those available from Terraserver and Google satellite imagery) to establish a unique geo-spatial coordinate system for pixels in the video. The geo-registration process enables Euclidean 3D reconstruction with absolute scale unlike traditional monocular structure from motion where continuous scale estimation over long periods of time is an issue. Geo-registration also enables correlation of video data to other stored information sources such as GIS (Geo-spatial Information System) databases. In addition to the geo-registration and 3D reconstruction aspects, the other key contributions of this paper also include: (1) providing a reliable geo-based solution to estimate camera pose for 3D reconstruction, (2) exploiting appearance and 3D shape constraints derived from geo-registered videos for labeling of structures such as buildings, foliage, and roads for scene understanding, and (3) elimination of moving object detection and tracking errors using 3D parallax constraints and semantic labels derived from geo-registered videos. Experimental results on extended time aerial video data demonstrates the qualitative and quantitative aspects of our work.


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


Author(s):  
Vijay Krishnamurthi ◽  
Brent Bailey ◽  
Frederick Lanni

Excitation field synthesis (EFS) refers to the use of an interference optical system in a direct-imaging microscope to improve 3D resolution by axially-selective excitation of fluorescence within a specimen. The excitation field can be thought of as a weighting factor for the point-spread function (PSF) of the microscope, so that the optical transfer function (OTF) gets expanded by convolution with the Fourier transform of the field intensity. The simplest EFS system is the standing-wave fluorescence microscope, in which an axially-periodic excitation field is set up through the specimen by interference of a pair of collimated, coherent, s-polarized beams that enter the specimen from opposite sides at matching angles. In this case, spatial information about the object is recovered in the central OTF passband, plus two symmetric, axially-shifted sidebands. Gaps between these bands represent "lost" information about the 3D structure of the object. Because the sideband shift is equal to the spatial frequency of the standing-wave (SW) field, more complete recovery of information is possible by superposition of fields having different periods. When all of the fields have an antinode at a common plane (set to be coincident with the in-focus plane), the "synthesized" field is peaked in a narrow infocus zone.


Author(s):  
John R. Porter

New ceramic fibers, currently in various stages of commercial development, have been consolidated in intermetallic matrices such as γ-TiAl and FeAl. Fiber types include SiC, TiB2 and polycrystalline and single crystal Al2O3. This work required the development of techniques to characterize the thermochemical stability of these fibers in different matrices.SEM/EDS elemental mapping was used for this work. To obtain qualitative compositional/spatial information, the best realistically achievable counting statistics were required. We established that 128 × 128 maps, acquired with a 20 KeV accelerating voltage, 3 sec. live time per pixel (total mapping time, 18 h) and with beam current adjusted to give 30% dead time, provided adequate image quality at a magnification of 800X. The maps were acquired, with backgrounds subtracted, using a Noran TN 5500 EDS system. The images and maps were transferred to a Macintosh and converted into TIFF files using either TIFF Maker, or TNtolMAGE, a Microsoft QuickBASIC program developed at the Science Center. From TIFF files, images and maps were opened in either NIH Image or Adobe Photoshop for processing and analysis and printed from Microsoft Powerpoint on a Kodak XL7700 dye transfer image printer.


Author(s):  
Enrico D.F. Motti ◽  
Hans-Georg Imhof ◽  
Gazi M. Yasargil

Physiologists have devoted most attention in the cerebrovascular tree to the arterial side of the circulation which has been subdivided in three levels: 1) major brain arteries which keep microcirculation constant despite changes in perfusion pressure; 2) pial arteries supposed to be effectors regulating microcirculation; 3) intracerebral arteries supposed to be deprived of active cerebral blood flow regulating devices.The morphological search for microvascular effectors in the cerebrovascular bed has been elusive. The opaque substance of the brain confines in vivo investigation to the superficial pial arteries. Most morphologists had to limit their observation to the random occurrence of a favorable site in the practically two-dimensional thickness of diaphanized histological sections. It is then not surprising most investigators of the cerebral microcirculation refer to an homogeneous network of microvessels interposed between arterioles and venules.We have taken advantage of the excellent depth of focus afforded by the scanning electron microscope (SEM) to investigate corrosion casts obtained injecting a range of experimental animals with a modified Batson's acrylic mixture.


Author(s):  
Jose-Maria Carazo ◽  
I. Benavides ◽  
S. Marco ◽  
J.L. Carrascosa ◽  
E.L. Zapata

Obtaining the three-dimensional (3D) structure of negatively stained biological specimens at a resolution of, typically, 2 - 4 nm is becoming a relatively common practice in an increasing number of laboratories. A combination of new conceptual approaches, new software tools, and faster computers have made this situation possible. However, all these 3D reconstruction processes are quite computer intensive, and the middle term future is full of suggestions entailing an even greater need of computing power. Up to now all published 3D reconstructions in this field have been performed on conventional (sequential) computers, but it is a fact that new parallel computer architectures represent the potential of order-of-magnitude increases in computing power and should, therefore, be considered for their possible application in the most computing intensive tasks.We have studied both shared-memory-based computer architectures, like the BBN Butterfly, and local-memory-based architectures, mainly hypercubes implemented on transputers, where we have used the algorithmic mapping method proposed by Zapata el at. In this work we have developed the basic software tools needed to obtain a 3D reconstruction from non-crystalline specimens (“single particles”) using the so-called Random Conical Tilt Series Method. We start from a pair of images presenting the same field, first tilted (by ≃55°) and then untilted. It is then assumed that we can supply the system with the image of the particle we are looking for (ideally, a 2D average from a previous study) and with a matrix describing the geometrical relationships between the tilted and untilted fields (this step is now accomplished by interactively marking a few pairs of corresponding features in the two fields). From here on the 3D reconstruction process may be run automatically.


Author(s):  
Adriana Verschoor ◽  
Ronald Milligan ◽  
Suman Srivastava ◽  
Joachim Frank

We have studied the eukaryotic ribosome from two vertebrate species (rabbit reticulocyte and chick embryo ribosomes) in several different electron microscopic preparations (Fig. 1a-d), and we have applied image processing methods to two of the types of images. Reticulocyte ribosomes were examined in both negative stain (0.5% uranyl acetate, in a double-carbon preparation) and frozen hydrated preparation as single-particle specimens. In addition, chick embryo ribosomes in tetrameric and crystalline assemblies in frozen hydrated preparation have been examined. 2D averaging, multivariate statistical analysis, and classification methods have been applied to the negatively stained single-particle micrographs and the frozen hydrated tetramer micrographs to obtain statistically well defined projection images of the ribosome (Fig. 2a,c). 3D reconstruction methods, the random conical reconstruction scheme and weighted back projection, were applied to the negative-stain data, and several closely related reconstructions were obtained. The principal 3D reconstruction (Fig. 2b), which has a resolution of 3.7 nm according to the differential phase residual criterion, can be compared to the images of individual ribosomes in a 2D tetramer average (Fig. 2c) at a similar resolution, and a good agreement of the general morphology and of many of the characteristic features is seen.Both data sets show the ribosome in roughly the same ’view’ or orientation, with respect to the adsorptive surface in the electron microscopic preparation, as judged by the agreement in both the projected form and the distribution of characteristic density features. The negative-stain reconstruction reveals details of the ribosome morphology; the 2D frozen-hydrated average provides projection information on the native mass-density distribution within the structure. The 40S subunit appears to have an elongate core of higher density, while the 60S subunit shows a more complex pattern of dense features, comprising a rather globular core, locally extending close to the particle surface.


Sign in / Sign up

Export Citation Format

Share Document