Output tracking with disturbance attenuation for cascade control systems subject to network constraint

2019 ◽  
Vol 22 (4) ◽  
pp. 1617-1627
Author(s):  
Dan Ma ◽  
Zhuoyu Li ◽  
Rubing Zhao
2005 ◽  
Vol 192 (9) ◽  
pp. 1204-1220 ◽  
Author(s):  
Wen Tan ◽  
Jizhen Liu ◽  
Tongwen Chen ◽  
Horacio J. Marquez

2019 ◽  
Vol 292 ◽  
pp. 01064 ◽  
Author(s):  
Donka Ivanova ◽  
Nikolay Valov ◽  
Martin Deyanov

In this article the application of genetic algorithm for tuning of HVAC cascade system is proposed. The tuning procedure for a cascade system is very time-consuming and practice shows that additional controller tuning is needed when classical method is used. The main problem in classical method is the interconnection between the parameters of the two controllers. The proposed optimal tuning procedure overcomes the disadvantages. It is based on the following criteria: minimum integral square error, minimum settling time and minimum overshoot. The best process quality is achieved with PI controller in the inner loop and a PID controller in the outer loop of the cascade HVAC system. The proposed method for simultaneous tuning of controller parameters in a cascade control system can be applied in different control systems.


2010 ◽  
Vol 36 ◽  
pp. 243-252 ◽  
Author(s):  
Yoshinori Ando ◽  
Tatsuya Sakanushi ◽  
Kou Yamada ◽  
Iwanori Murakami ◽  
Takaaki Hagiwara ◽  
...  

The multi-period repetitive (MPR) control system is a type of servomechanism for periodic reference inputs. Using MPR controllers, transfer functions from the reference input to the output and from the disturbance to the output of the MPR control system have infinite numbers of poles. To specify the input-output characteristic and the disturbance attenuation characteristic easily, Yamada and Takenaga proposed MPR control systems, named simple multi-period repetitive (simple MPR) control systems, where these transfer functions have finite numbers of poles. In addition, Yamada and Takenaga clarified the parameterization of all stabilizing simple MPR controllers. However, using the simple MPR repetitive controller by Yamada and Takenaga, we cannot specify the input-output characteristic and the disturbance attenuation characteristic separately. From the practical point of view, it is desirable to specify the input-output characteristic and the disturbance attenuation characteristic separately. The purpose of this paper is to propose the parameterization of all stabilizing two-degree-of-freedom (TDOF) simple MPR controllers that can specify the input-output characteristic and the disturbance attenuation characteristic separately.


Sign in / Sign up

Export Citation Format

Share Document