Phytosynthesis of CuONPs via Laurus nobilis : Determination of antioxidant content, antibacterial activity, and dye decolorization potential

Author(s):  
Buket Bulut Kocabas ◽  
Azade Attar ◽  
Aysegul Peksel ◽  
Melda Altikatoglu Yapaoz
2019 ◽  
Vol 22 (5) ◽  
pp. 346-354
Author(s):  
Yan A. Ivanenkov ◽  
Renat S. Yamidanov ◽  
Ilya A. Osterman ◽  
Petr V. Sergiev ◽  
Vladimir A. Aladinskiy ◽  
...  

Aim and Objective: Antibiotic resistance is a serious constraint to the development of new effective antibacterials. Therefore, the discovery of the new antibacterials remains one of the main challenges in modern medicinal chemistry. This study was undertaken to identify novel molecules with antibacterial activity. Materials and Methods: Using our unique double-reporter system, in-house large-scale HTS campaign was conducted for the identification of antibacterial potency of small-molecule compounds. The construction allows us to visually assess the underlying mechanism of action. After the initial HTS and rescreen procedure, luciferase assay, C14-test, determination of MIC value and PrestoBlue test were carried out. Results: HTS rounds and rescreen campaign have revealed the antibacterial activity of a series of Nsubstituted triazolo-azetidines and their isosteric derivatives that has not been reported previously. Primary hit-molecule demonstrated a MIC value of 12.5 µg/mL against E. coli Δ tolC with signs of translation blockage and no SOS-response. Translation inhibition (26%, luciferase assay) was achieved at high concentrations up to 160 µg/mL, while no activity was found using C14-test. The compound did not demonstrate cytotoxicity in the PrestoBlue assay against a panel of eukaryotic cells. Within a series of direct structural analogues bearing the same or bioisosteric scaffold, compound 2 was found to have an improved antibacterial potency (MIC=6.25 µg/mL) close to Erythromycin (MIC=2.5-5 µg/mL) against the same strain. In contrast to the parent hit, this compound was more active and selective, and provided a robust IP position. Conclusion: N-substituted triazolo-azetidine scaffold may be used as a versatile starting point for the development of novel active and selective antibacterial compounds.


2005 ◽  
Vol 60 (5-6) ◽  
pp. 385-388 ◽  
Author(s):  
Rubén García ◽  
Cesia Cayunao ◽  
Ronny Bocic ◽  
Nadine Backhouse ◽  
Carla Delporte ◽  
...  

Bioassay-directed fractionation for the determination of antimicrobial activity of Uncaria tomentosa, has led to the isolation of isopteropodine (0.3%), a known Uncaria pentacyclic oxindol alkaloid that exhibited antibacterial activity against Gram positive bacteria.


2020 ◽  
Author(s):  
Khaled El Khatib ◽  
Ribal Aby Hadeer ◽  
Anis Saad ◽  
Aline Kalaydjian ◽  
Elie Fayad ◽  
...  

Abstract Objective: This study investigated the antibacterial activity of Ilex paraguariensis extracts against 32 different strains of non-typhoidal Salmonella (NTS) through the determination of the Minimum Inhibitory Concentration (MIC), Mutant Prevention Concentration (MPC), Mutant Selection Window (MSW), and the detection of virulence genes by multiplex PCR assays. Results: The MIC values of Ilex paraguariensis against Salmonella spp. strains varied between 0.78 mg/ml and 6.25 mg/ml with a MIC 90 of 3.12 mg/ml. The highest MPC in this study was 48 mg/ml yielding a Mutant Selection Window of 41.75 mg/ml. The MSW values of the remaining strains varied between 1.56 and 8.87 mg/ml. Genes of pathogenicity detected in Salmonella spp. isolates were most commonly the stn, sdiA, invA, sopB, invH, and sopE genes. The antibacterial activity of Yerba Mate extracts was not affected by the antimicrobial resistance patterns or pathogenicity genes expressed. More work is needed to identify the active antibacterial compound(s) responsible for the antibacterial activity.


Sign in / Sign up

Export Citation Format

Share Document