Workshop WAVE2000: Wave Propagation/Moving Load/Vibration Reduction

Bautechnik ◽  
1999 ◽  
Vol 76 (9) ◽  
pp. 840-840
Author(s):  
K. Itoh ◽  
A. Takahashi ◽  
O. Kusakabe ◽  
M. Koda ◽  
O. Murata ◽  
...  
Keyword(s):  

2016 ◽  
Vol 24 (14) ◽  
pp. 2970-2985 ◽  
Author(s):  
Zhiwei Guo ◽  
Meiping Sheng

A periodic bi-layer beam structure is proposed and the bandgap characteristic of flexural wave is studied in this paper. The single cell is made up of two bi-layer beams with four components. For the infinite structure, the flexural wave bandgap frequency algorithm is theoretically derived through Timoshenko beam theory, Hamilton principle, Bloch-Floquet theory and transfer matrix method. An analytical example is presented to illustrate the bandgap characteristic and FEA software simulation is conducted to demonstrate the validation of the algorithm. For the finite structure, the vibration transmission characteristic is studied with FEA software to show the flexural wave attenuation behavior of the periodic bi-layer beam. The results reveal that, the flexural wave is attenuated gradually in the stopband along the direction of wave propagation, while in the passband, it will propagate without attenuation. Comparisons with periodic single layer beam are studied to verify the convenience and flexibility of bi-layer beam. Finally, parametric influences on bandgaps are discussed, which will help the designers to make a better design for vibration reduction.


2014 ◽  
Vol 543-547 ◽  
pp. 3900-3903
Author(s):  
Yu Yang He ◽  
Xiao Xiong Jin

Plane wave expansion (PWE) method and finite element method (FEM) are applied to analyze the vibration reduction characteristic of the phononic crystal structural plate, and the results of two methods are consistent. The range of band gap is acquired, which certain frequent elastic wave propagation is forbidden.


Author(s):  
Bo Zhao ◽  
David A. Peters

Abstract The space-time finite element method has emerged as a promising alternative numerical analysis technique for structural dynamics. This paper concentrates on hp-version triangular elements based on a variational statement of elasto-dynamics formed on Hamilton’s law of varying action. As such, forces and momenta are weak; and element boundaries may cut across space and time. This forms a natural framework for problems with both moving load and wave propagation. This paper presents applications of the method to such problems with numerical results and conclusions regarding proper mesh geometry.


2022 ◽  
pp. 136943322110632
Author(s):  
Jianyi Ji ◽  
Ronghui Wang ◽  
Niujing Ma ◽  
Kunhong Huang ◽  
Xiang Zhang

A physical perspective of the propagation and attenuation of flexural waves is presented in this paper for the dynamic behaviors of cable stayed beams subjected to a moving load. Based on the method of reverberation-ray matrix (MRRM), the waveform solutions of the wave equations of a simplified beam-cable system subjected to a moving load (hereinafter referred to as a beam-cable system) are given, and the theory is verified by a numerical example. The dynamic response of cable stayed beams is decomposed into nine kinds of flexural waves, including traveling waves, near-field waves, and nondispersive waves, according to the wavenumber characteristics. Numerical examples are analyzed to demonstrate the propagation characteristics of flexural waves through cable stayed beams. Numerical results show that the flexural waves in the cable stayed beams are mainly low-frequency waves whose frequencies are less than 3 times the structural fundamental frequency, which can be used to further improve the computational efficiency of response analysis method based on MRRM, and the proportion of high-frequency components increases gradually with increasing structural stiffness. The near-field wave can be transformed into a traveling shear wave when its frequency is larger than the critical frequency, which decreases with increasing radius of gyration and decreasing elastic modulus of the beam. With the increase in the radius of gyration and the elastic modulus of the beam, the attenuation effect of the near-field wave weakens. The wave velocity and the wave dispersion effect have a positive correlation with the stiffness-related parameters of the beam-cable system. The study of the effect of the beam-cable system parameters on flexural wave propagation characteristics can be applied to achieve a better dynamic design for engineering structures.


2019 ◽  
Vol 85 (873) ◽  
pp. 18-00437-18-00437
Author(s):  
Atsuo MORI ◽  
Yuichi MATSUMURA ◽  
Hisa IZUMIYA

Sign in / Sign up

Export Citation Format

Share Document