Comparing life cycle energy and GHG emissions of bio-based PET, recycled PET, PLA, and man-made cellulosics

2012 ◽  
Vol 6 (6) ◽  
pp. 625-639 ◽  
Author(s):  
Li Shen ◽  
Ernst Worrell ◽  
Martin K Patel
Buildings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Daniel Satola ◽  
Martin Röck ◽  
Aoife Houlihan-Wiberg ◽  
Arild Gustavsen

Improving the environmental life cycle performance of buildings by focusing on the reduction of greenhouse gas (GHG) emissions along the building life cycle is considered a crucial step in achieving global climate targets. This paper provides a systematic review and analysis of 75 residential case studies in humid subtropical and tropical climates. The study investigates GHG emissions across the building life cycle, i.e., it analyses both embodied and operational GHG emissions. Furthermore, the influence of various parameters, such as building location, typology, construction materials and energy performance, as well as methodological aspects are investigated. Through comparative analysis, the study identifies promising design strategies for reducing life cycle-related GHG emissions of buildings operating in subtropical and tropical climate zones. The results show that life cycle GHG emissions in the analysed studies are mostly dominated by operational emissions and are the highest for energy-intensive multi-family buildings. Buildings following low or net-zero energy performance targets show potential reductions of 50–80% for total life cycle GHG emissions, compared to buildings with conventional energy performance. Implementation of on-site photovoltaic (PV) systems provides the highest reduction potential for both operational and total life cycle GHG emissions, with potential reductions of 92% to 100% and 48% to 66%, respectively. Strategies related to increased use of timber and other bio-based materials present the highest potential for reduction of embodied GHG emissions, with reductions of 9% to 73%.


2008 ◽  
Vol 57 (11) ◽  
pp. 1683-1692 ◽  
Author(s):  
Andrea Tilche ◽  
Michele Galatola

Anaerobic digestion is a well known process that (while still capable of showing new features) has experienced several waves of technological development. It was “born” as a wastewater treatment system, in the 1970s showed promise as an alternative energy source (in particular from animal waste), in the 1980s and later it became a standard for treating organic-matter-rich industrial wastewater, and more recently returned to the market for its energy recovery potential, making use of different biomasses, including energy crops. With the growing concern around global warming, this paper looks at the potential of anaerobic digestion in terms of reduction of greenhouse gas (GHG) emissions. The potential contribution of anaerobic digestion to GHG reduction has been computed for the 27 EU countries on the basis of their 2005 Kyoto declarations and using life cycle data. The theoretical potential contribution of anaerobic digestion to Kyoto and EU post-Kyoto targets has been calculated. Two different possible biogas applications have been considered: electricity production from manure waste, and upgraded methane production for light goods vehicles (from landfill biogas and municipal and industrial wastewater treatment sludges). The useful heat that can be produced as by-product from biogas conversion into electricity has not been taken into consideration, as its real exploitation depends on local conditions. Moreover the amount of biogas already produced via dedicated anaerobic digestion processes has also not been included in the calculations. Therefore the overall gains achievable would be even higher than those reported here. This exercise shows that biogas may considerably contribute to GHG emission reductions in particular if used as a biofuel. Results also show that its use as a biofuel may allow for true negative GHG emissions, showing a net advantage with respect to other biofuels. Considering also energy crops that will become available in the next few years as a result of Common Agricultural Policy (CAP) reform, this study shows that biogas has the potential of covering almost 50% of the 2020 biofuel target of 10% of all automotive transport fuels, without implying a change in land use. Moreover, considering the achievable GHG reductions, a very large carbon emission trading “value” could support the investment needs. However, those results were obtained through a “qualitative” assessment. In order to produce robust data for decision makers, a quantitative sustainability assessment should be carried out, integrating different methodologies within a life cycle framework. The identification of the most appropriate policy for promoting the best set of options is then discussed.


Author(s):  
Soumith Kumar Oduru ◽  
Pasi Lautala

Transportation industry at large is a major consumer of fossil fuels and contributes heavily to the global greenhouse gas emissions. A significant portion of these emissions come from freight transportation and decisions on mode/route may affect the overall scale of emissions from a specific movement. It is common to consider several alternatives for a new freight activity and compare the alternatives from economic perspective. However, there is a growing emphasis for adding emissions to this evaluation process. One of the approaches to do this is through Life Cycle Assessment (LCA); a method for estimating the emissions, energy consumption and environmental impacts of the project throughout its life cycle. Since modal/route selections are often investigated early in the planning stage of the project, availability of data and resources for analysis may become a challenge for completing a detailed LCA on alternatives. This research builds on such detailed LCA comparison performed on a previous case study by Kalluri et al. (2016), but it also investigates whether a simplified LCA process that only includes emissions from operations phase could be used as a less resource intensive option for the analysis while still providing relevant outcomes. The detailed LCA is performed using SimaPro software and simplified LCA is performed using GREET 2016 model. The results are obtained in terms of Kg CO2 equivalents of GHG emissions. This paper introduces both detailed and simplified methodologies and applies them to a case study of a nickel and copper mine in the Upper Peninsula of Michigan. The analysis’ are done for three modal alternatives (two truck routes and one rail route) and for multiple mine lives.


Buildings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 105 ◽  
Author(s):  
Nadia MIRABELLA ◽  
Martin RÖCK ◽  
Marcella Ruschi Mendes SAADE ◽  
Carolin SPIRINCKX ◽  
Marc BOSMANS ◽  
...  

Globally, the building sector is responsible for more than 40% of energy use and it contributes approximately 30% of the global Greenhouse Gas (GHG) emissions. This high contribution stimulates research and policies to reduce the operational energy use and related GHG emissions of buildings. However, the environmental impacts of buildings can extend wide beyond the operational phase, and the portion of impacts related to the embodied energy of the building becomes relatively more important in low energy buildings. Therefore, the goal of the research is gaining insights into the environmental impacts of various building strategies for energy efficiency requirements compared to the life cycle environmental impacts of the whole building. The goal is to detect and investigate existing trade-offs in current approaches and solutions proposed by the research community. A literature review is driven by six fundamental and specific research questions (RQs), and performed based on two main tasks: (i) selection of literature studies, and (ii) critical analysis of the selected studies in line with the RQs. A final sample of 59 papers and 178 case studies has been collected, and key criteria are systematically analysed in a matrix. The study reveals that the high heterogeneity of the case studies makes it difficult to compare these in a straightforward way, but it allows to provide an overview of current methodological challenges and research gaps. Furthermore, the most complete studies provide valuable insights in the environmental benefits of the identified energy performance strategies over the building life cycle, but also shows the risk of burden shifting if only operational energy use is focused on, or when a limited number of environmental impact categories are assessed.


Author(s):  
Humberto Aceves-Gutierrez ◽  
Oscar López-Chávez ◽  
Santa Magdalena Mercado-Ibarra ◽  
Cesar Alejandro Contreras-Quintanar

Climate change is one of the main current problems, it concerns the entire human population since its effects are worldwide, especially now we have seen its consequences, according to Menghi (2007), the average global temperatures grew by more than 0.5 ° C in the last century, and the glaciers are disappearing from the earth. The greenhouse effect generated mainly by the gases of the same name (GHG), is the fundamental factor of climate change. Construction is one of the ways in which the human being contaminates in a constant way this due to urban growth and the demand for infrastructure that this generates. This research has the purpose of determining the KG-CO2 / M2 generated by a 44 m2 house of interest type INFONAVIT using the Life Cycle methodology (ACV) of the products or materials, established in ISO 14040, employee an inventory of KG-CO2 emissions from building materials, obtained from various bibliographic sources and databases and using the work volumes required to build the house. The results obtained of 161.57 Kg-CO2 / M2.


2021 ◽  
Author(s):  
Brandon Wilbur

Whole-building model optimizations have been performed for a single-detached house in 5 locations with varying climates, electricity emissions factors, and energy costs. The multi-objective optimizations determine the life-cycle cost vs. operational greenhouse gas emissions Pareto front to discover the 30-year life-cycle least-cost building design heated 1) with natural gas, and 2) electrically using a) central air-source heat pump, b) ductless mini-split heat pump c)ground-source heat pump, and d) electric baseboard, accounting for both initial and operational energy-related costs. A net-zero carbon design with grid-tied photovoltaics is also optimized. Results indicate that heating system type influences the optimal enclosure design, and that neither building total energy use, nor space heating demand correspond to GHG emissions across heating system types. In each location, at least one type of all-electric design has a lower life-cycle cost than the optimized gas-heated model, and such designs can mitigate the majority of operational GHG emissions from new housing in locations with a low carbon intensity electricity supply.


2021 ◽  
Author(s):  
Deva Siva Veylan

Detached accessory dwelling units are a building typology that, when built to passive design standards, can help reduce GHG emissions while addressing the socioeconomic pressures facing many housing markets. Energy performance metrics like those used in passive design standards are based on per unit of floor area and lead to a size-bias against smaller housing typologies. A life cycle assessment of cost-optimal passive house sizes ranging from 230 m² (2,500 ft²) to 30 m² (300 ft²) is performed to understand their total life cycle energy use and GHG emissions implications. Additionally, an analysis using BEopt examines operational energy use for 10 cost-optimal passive house sizes ranging from 230 m² (2,500 ft²) to 30 m² (300 ft²) across all 17 climate zones and examines how cost-optimal passive design changes with house size. The results show that per-occupant energy use and GHG emissions are similar or better for small house sizes and that cost-optimal passive design does not change significantly with house size.


2013 ◽  
Vol 31 (3) ◽  
pp. 169-176 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall

Life cycle assessment (LCA) was utilized to analyze the global warming potential (GWP), or carbon footprint, and associated costs of the production components of a field-grown, spade-dug, 5 cm (2 in) caliper Cercis canadensis ‘Forest Pansy’ in the Lower Midwest, U.S. A model production system was determined from interviews of nursery managers in the region. Input materials, equipment use and labor were inventoried for each production system component using international standards of LCA. The seed-to-landscape GWP, expressed in kilograms of carbon dioxide emission equivalent (CO2e), was determined to be 13.707. Equipment use constituted the majority (63%) of net CO2-e emissions during production, transport to the customer, and transplanting in the landscape. The model was queried to determine the possible impact of production system modifications on carbon footprint and costs to aid managers in examining their production system. Carbon sequestration of a redbud growing in the landscape over its 40 year life, weighted proportionally for a 100 year assessment period, was calculated to be −165 kg CO2e. The take-down and disposal activities following its useful life would result in the emission of 88.44 kg CO2e. The life-cycle GWP of the described redbud tree, including GHG emissions during production, transport, transplanting, take down and disposal would be −63 kg CO2e. Total variable costs associated with the labor, materials, and equipment use incurred in the model system were $0.069, $2.88, and $34.81 for the seedling, liner, and field production stages, respectively. An additional $18.83 was needed for transport to the landscape and planting in the landscape and after the 40 year productive life of the tree in the landscape, another $60.86 was needed for take-down and disposal activities.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6263
Author(s):  
Zhiwen Zhou ◽  
Yiming Lai ◽  
Qin Peng ◽  
Jun Li

An urgent demand for recycling spent lithium-ion batteries (LIBs) is expected in the forthcoming years due to the rapid growth of electrical vehicles (EV). To address these issues, various technologies such as the pyrometallurgical and hydrometallurgical method, as well as the newly developed in-situ roasting reduction (in-situ RR) method were proposed in recent studies. This article firstly provides a brief review on these emerging approaches. Based on the overview, a life cycle impact of these methods for recovering major component from one functional unit (FU) of 1 t spent EV LIBs was estimated. Our results showed that in-situ RR exhibited the lowest energy consumption and greenhouse gas (GHG) emissions of 4833 MJ FU−1 and 1525 kg CO2-eq FU−1, respectively, which only accounts for ~23% and ~64% of those for the hydrometallurgical method with citric acid leaching. The H2O2 production in the regeneration phase mainly contributed the overall impact for in-situ RR. The transportation distance for spent EV LIBs created a great hurdle to the reduction of the life cycle impact if the feedstock was transported by a 3.5–7.5 t lorry. We therefore suggest further optimization of the spatial distribution of the recycling facilities and reduction in the utilization of chemicals.


Sign in / Sign up

Export Citation Format

Share Document