scholarly journals Comparative Life Cycle Assessment of Merging Recycling Methods for Spent Lithium Ion Batteries

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6263
Author(s):  
Zhiwen Zhou ◽  
Yiming Lai ◽  
Qin Peng ◽  
Jun Li

An urgent demand for recycling spent lithium-ion batteries (LIBs) is expected in the forthcoming years due to the rapid growth of electrical vehicles (EV). To address these issues, various technologies such as the pyrometallurgical and hydrometallurgical method, as well as the newly developed in-situ roasting reduction (in-situ RR) method were proposed in recent studies. This article firstly provides a brief review on these emerging approaches. Based on the overview, a life cycle impact of these methods for recovering major component from one functional unit (FU) of 1 t spent EV LIBs was estimated. Our results showed that in-situ RR exhibited the lowest energy consumption and greenhouse gas (GHG) emissions of 4833 MJ FU−1 and 1525 kg CO2-eq FU−1, respectively, which only accounts for ~23% and ~64% of those for the hydrometallurgical method with citric acid leaching. The H2O2 production in the regeneration phase mainly contributed the overall impact for in-situ RR. The transportation distance for spent EV LIBs created a great hurdle to the reduction of the life cycle impact if the feedstock was transported by a 3.5–7.5 t lorry. We therefore suggest further optimization of the spatial distribution of the recycling facilities and reduction in the utilization of chemicals.

2016 ◽  
Vol 328 ◽  
pp. 482-491 ◽  
Author(s):  
Lianjun Liu ◽  
Xingkang Huang ◽  
Xiaoru Guo ◽  
Shun Mao ◽  
Junhong Chen

2020 ◽  
Vol 12 (11) ◽  
pp. 4628
Author(s):  
Rosario Tolomeo ◽  
Giovanni De Feo ◽  
Renata Adami ◽  
Libero Sesti Osséo

This study is a critical review of the application of life cycle assessment (LCA) to lithium ion batteries in the automotive sector. The aim of this study is to identify the crucial points of the analysis and the results achieved until now in this field. In the first part of the study, a selection of papers is reviewed. In the second part of the study, a methodological approach to LCA is adopted to make clear the strengths and weaknesses of this analysis method. The lack of primary data is a crucial concern. Even if the cradle-to-grave approach is the most chosen system boundary, further scientific contribution to the life cycle inventory phase is necessary. It is likely that the more the electric vehicle becomes widespread, the more data will be accessible. Many authors have not specified the chemistry of the used batteries (5% of the studies), the software tool used (30%) or the functional unit used (17%) and, consequently, their obtained results can be questionable. However, even with the aforementioned limitations, the performed review allows us to point out the potential of electric vehicles and lithium ion batteries to reduce the overall contribution of the transportation sector to GHG emissions.


2021 ◽  
Vol 13 (10) ◽  
pp. 5726
Author(s):  
Aleksandra Wewer ◽  
Pinar Bilge ◽  
Franz Dietrich

Electromobility is a new approach to the reduction of CO2 emissions and the deceleration of global warming. Its environmental impacts are often compared to traditional mobility solutions based on gasoline or diesel engines. The comparison pertains mostly to the single life cycle of a battery. The impact of multiple life cycles remains an important, and yet unanswered, question. The aim of this paper is to demonstrate advances of 2nd life applications for lithium ion batteries from electric vehicles based on their energy demand. Therefore, it highlights the limitations of a conventional life cycle analysis (LCA) and presents a supplementary method of analysis by providing the design and results of a meta study on the environmental impact of lithium ion batteries. The study focuses on energy demand, and investigates its total impact for different cases considering 2nd life applications such as (C1) material recycling, (C2) repurposing and (C3) reuse. Required reprocessing methods such as remanufacturing of batteries lie at the basis of these 2nd life applications. Batteries are used in their 2nd lives for stationary energy storage (C2, repurpose) and electric vehicles (C3, reuse). The study results confirm that both of these 2nd life applications require less energy than the recycling of batteries at the end of their first life and the production of new batteries. The paper concludes by identifying future research areas in order to generate precise forecasts for 2nd life applications and their industrial dissemination.


2020 ◽  
Vol 59 (1) ◽  
pp. 477-487 ◽  
Author(s):  
Zhuang Liu ◽  
Haiyang Fu ◽  
Bo Gao ◽  
Yixuan Wang ◽  
Kui Li ◽  
...  

AbstractThis paper studies in-situ synthesis of Fe2O3/reduced graphene oxide (rGO) anode materials by different hydrothermal process.Scanning Electron Microscopy (SEM) analysis has found that different processes can control the morphology of graphene and Fe2O3. The morphologies of Fe2O3 prepared by the hydrothermal in-situ and oleic acid-assisted hydrothermal in-situ methods are mainly composed of fine spheres, while PVP assists The thermal in-situ law presents porous ellipsoids. Graphene exhibits typical folds and small lumps. X-ray diffraction analysis (XRD) analysis results show that Fe2O3/reduced graphene oxide (rGO) is generated in different ways. Also, the material has good crystallinity, and the crystal form of the iron oxide has not been changed after adding GO. It has been reduced, and a characteristic peak appears around 25°, indicating that a large amount of reduced graphene exists. The results of the electrochemical performance tests have found that the active materials prepared in different processes have different effects on the cycle performance of lithium ion batteries. By comprehensive comparison for these three processes, the electro-chemical performance of the Fe2O3/rGO prepared by the oleic acid-assisted hydrothermal method is best.


Author(s):  
Feipeng Yang ◽  
Xuefei Feng ◽  
Yi‐Sheng Liu ◽  
Li Cheng Kao ◽  
Per‐Anders Glans ◽  
...  

2021 ◽  
Vol 54 (2) ◽  
pp. 874-887
Author(s):  
Liping Yu ◽  
Yong Zhang ◽  
Jirong Wang ◽  
Huihui Gan ◽  
Shaoqiao Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document