Micro 3D cell culture systems for cellular behavior studies: Culture matrices, devices, substrates, and in-situ sensing methods

2015 ◽  
Vol 10 (11) ◽  
pp. 1682-1688 ◽  
Author(s):  
Jonghoon Choi ◽  
Eun Kyu Lee ◽  
Jaebum Choo ◽  
Junhan Yuh ◽  
Jong Wook Hong
2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Laurence Finot ◽  
Eric Chanat ◽  
Frederic Dessauge

AbstractIn vivo study of tissue or organ biology in mammals is very complex and progress is slowed by poor accessibility of samples and ethical concerns. Fortunately, however, advances in stem cell identification and culture have made it possible to derive in vitro 3D “tissues” called organoids, these three-dimensional structures partly or fully mimicking the in vivo functioning of organs. The mammary gland produces milk, the source of nutrition for newborn mammals. Milk is synthesized and secreted by the differentiated polarized mammary epithelial cells of the gland. Reconstructing in vitro a mammary-like structure mimicking the functional tissue represents a major challenge in mammary gland biology, especially for farm animals for which specific agronomic questions arise. This would greatly facilitate the study of mammary gland development, milk secretion processes and pathological effects of viral or bacterial infections at the cellular level, all with the objective of improving milk production at the animal level. With this aim, various 3D cell culture models have been developed such as mammospheres and, more recently, efforts to develop organoids in vitro have been considerable. Researchers are now starting to draw inspiration from other fields, such as bioengineering, to generate organoids that would be more physiologically relevant. In this chapter, we will discuss 3D cell culture systems as organoids and their relevance for agronomic research.


2020 ◽  
pp. 201-236
Author(s):  
Omaer Syed ◽  
Chris Chapman ◽  
Catalina Vallejo-Giraldo ◽  
Martina Genta ◽  
Josef Goding ◽  
...  

2013 ◽  
Vol 26 (6) ◽  
pp. 865-872 ◽  
Author(s):  
Daniel D. McKinnon ◽  
Dylan W. Domaille ◽  
Jennifer N. Cha ◽  
Kristi S. Anseth

2018 ◽  
Vol 41 (4) ◽  
pp. 213-222
Author(s):  
Roberta Gentilini ◽  
Fabiola Munarin ◽  
Nora Bloise ◽  
Eleonora Secchi ◽  
Livia Visai ◽  
...  

Background: To date, cell cultures have been created either on 2-dimensional (2D) polystyrene surfaces or in 3-dimensional (3D) systems, which do not offer a controlled chemical composition, and which lack the soft environment encountered in vivo and the chemical stimuli that promote cell proliferation and allow complex cellular behavior. In this study, pectin-based hydrogels were developed and are proposed as versatile cell culture systems. Methods: Pectin-based hydrogels were produced by internally crosslinking pectin with calcium carbonate at different initial pH, aiming to control crosslinking kinetics and degree. Additionally, glucose and glutamine were added as additives, and their effects on the viscoelastic properties of the hydrogels and on cell viability were investigated. Results: Pectin hydrogels showed in high cell viability and shear-thinning behavior. Independently of hydrogel composition, an initial swelling was observed, followed by a low percentage of weight variation and a steady-state stage. The addition of glucose and glutamine to pectin-based hydrogels rendered higher cell viability up to 90%-98% after 1 hour of incubation, and these hydrogels were maintained for up to 7 days of culture, yet no effect on viscoelastic properties was detected. Conclusions: Pectin-based hydrogels that offer tunable composition were developed successfully. They are envisioned as synthetic extracellular matrix (ECM) either to study complex cellular behaviors or to be applied as tissue engineering substitutes.


Sign in / Sign up

Export Citation Format

Share Document