Cross-linking density alters early metabolic activities in chondrocytes encapsulated in poly(ethylene glycol) hydrogels and cultured in the rotating wall vessel

2009 ◽  
Vol 102 (4) ◽  
pp. 1242-1250 ◽  
Author(s):  
Idalis Villanueva ◽  
Brenda J. Klement ◽  
Daniel von Deutsch ◽  
Stephanie J. Bryant
2015 ◽  
Vol 90 ◽  
pp. 21-24 ◽  
Author(s):  
Pamela de Cuadro ◽  
Tiina Belt ◽  
Katri S. Kontturi ◽  
Mehedi Reza ◽  
Eero Kontturi ◽  
...  

Synlett ◽  
2018 ◽  
Vol 29 (19) ◽  
pp. 2535-2541
Author(s):  
Alex Adronov ◽  
Kelvin Li ◽  
Stuart McNelles

A poly[(phenylene vinylene)-co-dibenzocyclooctyne] polymer prepared by Wittig polymerization chemistry between dibenzocyclooctyne bisaldehyde [DIBO-(CHO)2] and bis(triethyleneglycol)phenylbis(tributylphosphonium) dibromide is reported. The resulting polymer exhibits moderate molecular weight (Mn: 10.5 kDa, Mw: 21.3 kDa, Ð: 2.02) and is fluorescent. It could be readily functionalized by strain-promoted alkyne-azide cycloadditon with different azides, and fluorescence of the polymer was preserved after functionalization. Grafting azide-terminated 5 kDa poly(ethylene glycol) monomethyl ether chains drastically affected the solubility of the polymer. Cross-linking the polymer with poly(ethylene glycol) that was terminated at both ends with azide groups gave access to a fluorescent organogel that could be dried and reswollen with water to form a hydrogel.


2002 ◽  
Vol 13 (2) ◽  
pp. 232-239 ◽  
Author(s):  
Youmie Park ◽  
Kai Y. Kwok ◽  
Chawki Boukarim ◽  
Kevin G. Rice

2016 ◽  
Vol 4 (26) ◽  
pp. 4574-4584 ◽  
Author(s):  
S. Ryu ◽  
H. H. Kim ◽  
Y. H. Park ◽  
C.-C. Lin ◽  
I. C. Um ◽  
...  

Hydrogel formation by more than two cross-linking mechanisms is preferred for the sophisticated manipulation of hydrogel properties.


2008 ◽  
Vol 1132 ◽  
Author(s):  
F. Bedoui ◽  
L. K. Widjaja ◽  
A. Luk ◽  
D. Bolikal ◽  
N. S. Murthy ◽  
...  

ABSTRACTIncrease in modulus upon hydration in copolymers of desaminotyrosyl-tyrosine ethyl ester (DTE) and poly(ethylene glycol) (PEG) with iodinated tyrosines, poly(I2DTE-co-PEG carbonate)s, was investigated by varying the fraction and the molecular weight of the hydrophilic PEG component. Water, as expected, acts as plasticizer in polymer with PEG content < 15 wt% and > 30 wt%. But, water has the opposite effect in iodinated polymers with moderate PEG contents, between 15 to 20 wt%: it enhances the Young's modulus. The strength and modulus of hydrated poly(I2DTE-co-15%PEG2K carbonate)s increased by as much as fifteen fold upon hydration. While the decrease in the mechanical properties in most polymeric materials with diluents such water is due to the solvent-induced swelling, the increase in strength and modulus that is observed is most likely due to the reinforcing effect of the increased cross-linking efficiency of the hydrated PEG domains in the iodinated polymer.


2019 ◽  
Vol 944 ◽  
pp. 557-564
Author(s):  
Jia Ming Xu ◽  
Dan Yue Wang ◽  
Han Tong ◽  
Xiao Ze Jiang ◽  
Mei Fang Zhu

Two kinds of diblock copolymers containing glucose and phenylboronic acid moieties, respectively, poly (ethylene glycol)-b-poly (gluconamidoethyl methacrylate) (PEG-b-PGAMA) and poly (ethylene glycol)-b-poly (2-aminoethyl methacrylate-co-3-nitrophenyboronic acid methacrylate) (PEG-b-P(AMA-co-NPBMA)) were synthesized via atom transfer radical polymerization (ATRP) and post polymerization modification (PPM). Well-defined structure and narrow molecular weight distribution of the polymers were confirmed by proton Nuclear Magnetic Resonance (1H NMR) and Gel Permeation Chromatography (GPC). Based on the cross-linking between the diol groups of the glycopolymer and phenylboronic acid under physiological pH (7.4), complex micelles composed of PEG outer shell and boronate ester cross-linking core with a hydrodynamic diameter around 20nm were formed. Morphology, size and assembly behavior of the complex micelles were investigated by 1H NMR, transmission electron microscopy (TEM) and dynamic light scattering (DLS). The results showed the formation/cleavage of boronate ester linkage is reversible upon the variation of solution pH, the complex micelles displayed pH sentiveties of assembling/disassembling behavior. Above pH 7.4, stable spherical micelles can be formed, whereas pH less than 5.5, the micelles dissociated into unimers. Therefore, such pH-responsive micelles based on dynamic complexation of phenyl boronate bonds are expected to be applied to pH-responsive nanodrug carriers


2015 ◽  
Vol 30 (1) ◽  
pp. 193-197 ◽  
Author(s):  
Xingjian Hu ◽  
Nianguo Dong ◽  
Jiawei Shi ◽  
Huadong Li ◽  
Cheng Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document