scholarly journals Biomass production of hairy roots of Artemisia annua and Arachis hypogaea in a scaled-up mist bioreactor

2010 ◽  
Vol 107 (5) ◽  
pp. 802-813 ◽  
Author(s):  
Ganapathy Sivakumar ◽  
Chunzhao Liu ◽  
Melissa J. Towler ◽  
Pamela J. Weathers
Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 975
Author(s):  
Ye-Eun Park ◽  
Chang-Ha Park ◽  
Hyeon-Ji Yeo ◽  
Yong-Suk Chung ◽  
Sang-Un Park

Peanut (Arachis hypogaea) is a crop that can produce resveratrol, a compound with various biological properties, such as those that exert antioxidant, anticancer, and anti-inflammatory effects. In this study, trans-resveratrol was detected in the roots, leaves, and stems of tan and purple seed coat peanuts (Arachis hypogaea) cultivated in a growth chamber. Both cultivars showed higher levels of resveratrol in the roots than the other plant parts. Thus, both cultivars were inoculated with Agrobacterium rhizogenes, in vitro, to promote hairy root development, thereby producing enhanced levels of t-resveratrol. After 1 month of culture, hairy roots from the two cultivars showed higher levels of fresh weight than those of seedling roots. Furthermore, both cultivars contained higher t-resveratrol levels than those of their seedling roots (6.88 ± 0.21 mg/g and 28.07 ± 0.46 mg/g, respectively); however, purple seed coat peanut hairy roots contained higher t-resveratrol levels than those of tan seed coat peanut hairy roots, ranging from 70.16 to 166.76 mg/g and from 46.61 to 54.31 mg/g, respectively. The findings of this study indicate that peanut hairy roots could be a good source for t-resveratrol production due to their rapid growth, high biomass, and substantial amount of resveratrol.


Genetika ◽  
2015 ◽  
Vol 47 (1) ◽  
pp. 71-84
Author(s):  
Snezana Milosevic ◽  
Milena Lojic ◽  
Dragana Antonic ◽  
Aleksandar Cingel ◽  
Angelina Subotic

Impatiens walleriana L. shoots were inoculated with Agrobacterium rhizogenes A4M70GUS and the effects of genetic transformation on the catalase (CAT), superoxide dismutase (SOD) and peroxidase (POX) activities in wounded region of stems and unwounded leaves were evaluated 10, 24, 240 and 720 hours after inoculation. Following Agrobacterum infection activities of plant antioxidative enzymes changed in a time-dependent manner indicating that dynamic processes occurred during plant-Agrobacterium interaction, plant cell transformation and formation of hairy roots. Appearance of hairy roots on wound sites of shoots was observed ten days after inoculation with A. rhizogenes and the root induction frequency was 100%. Among selected hairy root lines significant differences in growth rate and biomass production were observed and an average 3-fold increase in biomass production was observed for the best growing hairy root line compared with the untransformed roots. PCR analysis showed presence of uidA, rolB, rolC and rolD genes in all analyzed I. walleriana L. hairy root lines, while amplification fragment of rolA gene was detected in 83.3% transformed lines. Efficient transformation protocol for I. walleriana L described in this work offer possibilities to generate hairy root cultures for in vitro propagation of plant viruses.


2021 ◽  
Author(s):  
Neha Pandey ◽  
Krishna Kumar Rai ◽  
Sanjay Kumar Rai ◽  
Shashi Pandey-Rai

Abstract The present study provides the first report of heterologous expression of phytochelatin synthase from Anabaena PCC 7120 (anaPCS) into the hairy roots of Artemisia annua. Transformed hairy roots of A. annua expressing anaPCS gene showed better tolerance to heavy metals viz., arsenic (As) and cadmium (Cd) owing to 143 and 191 % more As and Cd accumulation respectively as compared to normal roots with a bioconcentration factor (BCF) of 9.7 and 21.1 for As and Cd respectively. Under As and Cd stresses, transformed hairy roots possessed significantly higher amounts of phytochelatins and thiols probably due to the presence of both AaPCS (Artemisia annua PCS) and anaPCS. In addition, artemisinin synthesis was also induced in transformed hairy roots under heavy metals stresses. In-silico analysis revealed the presence of conserved motifs in both AaPCS and anaPCS sequences as well as structural modelling of PCS functional domain was conducted. Interaction of AaPCS and anaPCS proteins with CdCl2 and sodium arsenate gene ontology analysis gave insights to anaPCS functioning in transformed hairy roots of A. annua. The study provides transformed hairy roots of A. annua as an efficient tool for effective phytoremediation with added advantages of artemisinin extraction from hairy roots used for phytoremediation.


Sign in / Sign up

Export Citation Format

Share Document