scholarly journals Calculation of mean cell residence time for unsteady-state activated sludge systems

1985 ◽  
Vol 27 (9) ◽  
pp. 1393-1393
Author(s):  
David A. Vaccari ◽  
Tom Fagedes ◽  
Jon Longtin
1984 ◽  
Vol 16 (12) ◽  
pp. 649-660
Author(s):  
P Balmér ◽  
S Hallquist ◽  
M Hernebring

The Rya wastewater treatment plant in Gothenburg, Sweden serves 640 000 population equivalents. It is an extremely highly loaded activated sludge plant without presetting with a mean cell residence time of about 0.5 days. Ten years experience proves that the plant is capable of removing about 70% of the BOD load. The effluent BOD is mainly caused by non settleable suspended solids due to the partly dispersed growth of the activated sludge. The low mean cell residence time and the high suspended solids concentration in the aeration basin influent gives an activated sludge with low viability and in mass balance studies it was determined that only 12% of the influent COD and about 40% of the BOD was oxidized by the activated sludge. The activated sludge has consistently had a very low sludge volume index and the settling basins could thus be very highly loaded. The surplus activated sludge could be thickened to solids concentrations over 6%. After dewatering the sludge was either lime treated or co-composted with bark. The plant is manned only eight hours five days a week. During unmanned time there are standby personnel. Data is presented on man power, energy and chemical use, and on costs.


1992 ◽  
Vol 25 (6) ◽  
pp. 93-103 ◽  
Author(s):  
W. Gujer ◽  
J. Kappeier

A biokinetic model is introduced which allows for the prediction of the development of flocforming, filamentous and ‘Nocardia' type microorganisms in aerobic activated sludge systems with a variety of different flowschemes and operating conditions. The model is based on the competition of the organisms for different organic substrates. For ‘Nocardia' a flotation process is introduced which allows for a longer residence time of these organisms as compared to the SRT. The model predicts activated sludge composition and behavior in accordance with a variety of experimental observations.


1977 ◽  
Vol 12 (1) ◽  
pp. 191-212
Author(s):  
B. Volesky ◽  
Q. Samak ◽  
P. Waller

Abstract Review of the available results appearing in the recent literature is presented focusing particularly upon the effects of metallic ions such as Cr, Cu, Zn, Cd, Hg, V, Zn, Ni and Co. Some original data involving the effects of Na are presented and discussed. Development of parameters used in evaluating the influence of toxic or inhibitory species on the mixed microbial population of an activated sludge system is of crucial importance and different techniques employed such as BOD-COD-TOC-removal rates, Oxygen Uptake Rate, and others are discussed, showing relative inadequacy of currently applied assays. From the data available, certain trends can be discerned. There is a definite threshold concentration for each metallic ion, depending on the organic load of the feed. In the order of increasing toxicity to activated sludge systems reflected in lower BOD removals the following metals have been listed as inhibiting factors at concentrations starting from 1 ppm applied on a continuous basis: hexavalent chromium, cobalt, zinc, cadmium, trivalent chromium, copper and nickel. Metals in combination have not been reported to exhibit any significantly different effects as compared to those observed with individually introduced metallic ions. Tolerance of some activated sludge systems to shock loadings by various inorganic ions and metals is reviewed. The conclusions are of particular importance for estimating the performance of biox systems handling industrial effluents which are likely to contain toxic components of inorganic or metallic nature.


1991 ◽  
Vol 23 (7-9) ◽  
pp. 1503-1507 ◽  
Author(s):  
L. M. Triet ◽  
N. T. Viet ◽  
T. V. Thinh ◽  
H. D. Cuong ◽  
J. C. L. van Buuren

The effluent from activated sludge treatment of petroleum wastewater was treated with the aid of a ponding system using aquatic plants (Water Hyacinth, Chlorella, Reed). A good result was obtained in this study. Pilot pond system shows that the purification efficiency depends on the residence time of about 14 days. The petroleum removal waa 97-98 %, the COD removal was from 88-93 %. The dissolved oxygen amount (with Chlorella) increased from 0.7 mg/l to 9.8 mg/l and the pH increased from 6.9 to 8-8.6. The application of 3 step biological pond with the use of Water Hyacinth, Chlorella, Reeds for post treatment of petroleum wastewater is appropriate in Vietnam.


1991 ◽  
Vol 24 (7) ◽  
pp. 59-64 ◽  
Author(s):  
R. W. Szetela

Steady-state models are presented to describe the wastewater treatment process in two activated sludge systems. One of these makes use of a single complete-mix reactor; the other one involves two complete-mix reactors arranged in series. The in-series system is equivalent to what is known as the “two-phase” activated sludge, a concept which is now being launched throughout Poland in conjunction with the PROMLECZ technology under implementation. Analysis of the mathematical models has revealed the following: (1) treatment efficiency, excess sludge production, energy consumption, and the degree of sludge stabilization are identical in the two systems; (2) there exists a technological equivalence of “two-phase” sludge with “single-phase” sludge; (3) the “two-phase” system has no technological advantage over the “single-phase” system.


Sign in / Sign up

Export Citation Format

Share Document