Ten Years Experience with a Highly Loaded Activated Sludge Plant

1984 ◽  
Vol 16 (12) ◽  
pp. 649-660
Author(s):  
P Balmér ◽  
S Hallquist ◽  
M Hernebring

The Rya wastewater treatment plant in Gothenburg, Sweden serves 640 000 population equivalents. It is an extremely highly loaded activated sludge plant without presetting with a mean cell residence time of about 0.5 days. Ten years experience proves that the plant is capable of removing about 70% of the BOD load. The effluent BOD is mainly caused by non settleable suspended solids due to the partly dispersed growth of the activated sludge. The low mean cell residence time and the high suspended solids concentration in the aeration basin influent gives an activated sludge with low viability and in mass balance studies it was determined that only 12% of the influent COD and about 40% of the BOD was oxidized by the activated sludge. The activated sludge has consistently had a very low sludge volume index and the settling basins could thus be very highly loaded. The surplus activated sludge could be thickened to solids concentrations over 6%. After dewatering the sludge was either lime treated or co-composted with bark. The plant is manned only eight hours five days a week. During unmanned time there are standby personnel. Data is presented on man power, energy and chemical use, and on costs.

1997 ◽  
Vol 35 (8) ◽  
pp. 127-135 ◽  
Author(s):  
Youngchul Kim ◽  
Wesley O. Pipes ◽  
Paul-Gene Chung

This is a report of a field study based on data from an activated sludge process in a wastewater treatment plant in Chester, Pennsylvania, USA. The objective was to develop an accurate method for estimation of the average suspended solids concentration (SSB) of the layer of sludge in the settling tanks (the “sludge blanket”). Plant operators estimated SSB by averaging the mixed liquor suspended solids (Sm) and the return sludge suspended solids (Su) concentrations. Measurement of SSB showed that averaging Sm and Su frequently overestimated SSB by a large amount. A different relationship between SSB and parameters which are normally measured for operational purposes was developed. The parameters are Su, the overflow rates and data from the sludge volume index (SVI) measurement. It was found that an increasing overflow rate will result in an exponential decrease in the ratio of SSB to Su. Also, the SVI has a marked effect on the ratio of SSB to Su and thus on the amount of suspended solids which can be stored in the settling tanks. The proposed estimation equation was found to be statistically superior to estimation by averaging the Sm and Su.


2013 ◽  
Vol 68 (6) ◽  
pp. 1400-1405 ◽  
Author(s):  
M. Linarić ◽  
M. Markić ◽  
L. Sipos

The shock effect, survival and ability of activated sludge to acclimatize to wastewater containing different concentrations of NaCl and Na2SO4 were investigated under laboratory conditions. To accomplish this, the potential penetration of a sewage system by seawater as a consequence of storm surge flooding was simulated. The experiments were conducted using activated sludge taken from the aeration tank of a communal wastewater treatment plant and adding different concentrations up to 40 g/L of NaCl and 4.33 g/L of Na2SO4. The effects of salinity on the activated sludge were monitored for 5 weeks based on the values of pH, dissolved oxygen, total suspended solids, volatile suspended solids, sludge volume, sludge volume index, electrokinetic potential, respirometric measurements and enzymatic activity. The addition of salt sharply reduced or completely inhibited the microbial activity in activated sludge. When salt concentrations were below 10 g/L NaCl, microorganisms were able to acclimatize in several weeks and achieve the same initial activity as in raw sludge samples. When the salt concentration was above 30 g/L NaCl, the acclimatization process was very slow or impossible.


2001 ◽  
Vol 43 (7) ◽  
pp. 91-96 ◽  
Author(s):  
M. da Motta ◽  
M. N. Pons ◽  
N. Roche

An automated procedure for the characterisation by image analysis of the morphology of activated sludge has been used to monitor the biomass in a pilot wastewater treatment plant, in complement to the usual settleability (sludge volume index, settling velocity) and size distribution (by laser granulometry) measurements.


2001 ◽  
Vol 43 (7) ◽  
pp. 73-81 ◽  
Author(s):  
K. Gernaey ◽  
P. A. Vanrolleghem ◽  
P. Lessard

Even though many models have been proposed for primary clarification, none is directly compatible with the ASM1. The objective of this paper is to present the development of a reactive primary clarifier model to be used in a wastewater treatment plant simulator (WEST). A model simulating COD behavior has been developed based on the Takacs model, and was tested with full-scale data. Particulate effluent COD was well described but problems occurred predicting the underflow suspended solids concentration. The model had to be upgraded with a residence time and a flocculation term to simulate the behavior of soluble COD. An ammonification term was added to the model, resulting in an improved model fit on effluent ammonium.


2012 ◽  
Vol 7 (1) ◽  
Author(s):  
S. S. Fatima ◽  
S. Jamal Khan

In this study, the performance of wastewater treatment plant located at sector I-9 Islamabad, Pakistan, was evaluated. This full scale domestic wastewater treatment plant is based on conventional activated sludge process. The parameters which were monitored regularly included total suspended solids (TSS), mixed liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), biological oxygen demand (BOD), and chemical oxygen demand (COD). It was found that the biological degradation efficiency of the plant was below the desired levels in terms of COD and BOD. Also the plant operators were not maintaining consistent sludge retention time (SRT). Abrupt discharge of MLSS through the Surplus Activated sludge (SAS) pump was the main reason for the low MLSS in the aeration tank and consequently low treatment performance. In this study the SRT was optimized based on desired MLSS concentration between 3,000–3,500 mg/L and required performance in terms of BOD, COD and TSS. This study revealed that SRT is a very important operational parameter and its knowledge and correct implementation by the plant operators should be mandatory.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 5-12 ◽  
Author(s):  
E.v. Münch ◽  
K. Barr ◽  
S. Watts ◽  
J. Keller

The Oxley Creek wastewater treatment plant is a conventional 185,000 EP BOD removal activated sludge plant that is to be upgraded for nitrogen removal to protect its receiving water bodies, the Brisbane River and Moreton Bay. Suspended carrier technology is one possible way of upgrading this activated sludge wastewater treatment plant for nitrogen removal. Freely moving plastic media is added to the aeration zone, providing a growth platform for nitrifying bacteria and increasing the effective solids residence time (SRT). This paper presents the results from operating a pilot plant for 7 months at the Oxley Creek WWTP in Brisbane, Australia. Natrix Major 12/12 plastic media, developed by ANOX (Lund, Sweden), was trialed in the pilot plant. The pilot plant was operated with a mixed liquor suspended solids concentration of 1220 mg/L and a total hydraulic residence time of 5.4 hours, similar to the operating conditions in the full-scale Stage 1&2 works at the Oxley Creek WWTP. The plastic carriers were suspended in the last third of the bioreactor volume, which was aerated to a DO setpoint of 4.0 mg/L. The first third of the bioreactor volume was made anoxic and the second third served for carbon removal, being aerated to a DO setpoint of 0.5 mg/L. The results from the pilot plant indicate that an average effluent total inorganic nitrogen concentration (ammonia-N plus NOx−N) of less than 12 mg/L is possible. However, the effluent ammonia concentrations from the pilot plant showed large weekly fluctuations due to the intermittent operation of the sludge dewatering centrifuge returning significant ammonia loads to the plant on three days of the week. Optimising denitrification was carried out by lowering the DO concentration in the influent and in the carbon removal reactor. The results from the pilot plant study show that the Oxley Creek WWTP could be upgraded for nitrogen removal without additional tankage, using suspended carrier technology.


1988 ◽  
Vol 20 (4-5) ◽  
pp. 143-152 ◽  
Author(s):  
M. Tendaj-Xavier ◽  
J. Hultgren

Bromma sewage treatment plant is the second largest plant in Stockholm with a design flow of 160,000 m3/d. The wastewater is treated mechanically, chemically by pre-precipitation with ferrous sulphate, and biologically by the activated sludge process. The requirements for the plant are 8 mg BOD7/l, 0.4 mg P/l and 2 mg NH4+-N/l. The requirement for ammonia refers to the period July-October. In order to meet those rather stringent requirements, the biological step was expanded 3 years ago with 6 new sedimentation tanks. The 6 new tanks have the same area as the 6 old ones but they have only a depth of 3.7 m compared with the depth of the old tanks, 5.7 m. Experience from the first years of operation of the new tanks is that these tanks are more sensitive and less efficient than the older ones. It seems that the effluent suspended solids concentration from the old tanks is less influenced by rapid flow variations than the concentration in the effluent from the new secondary sedimentation tanks. During the nitrification period denitrification takes place to some degree in the secondary sedimentation tanks. This may cause loss of solids and it has been observed that the deeper old tanks usually produce an effluent of better quality and seem to be less influenced by denitrification than the new ones.


2013 ◽  
Vol 68 (9) ◽  
pp. 1932-1939 ◽  
Author(s):  
Vera L. Barbosa ◽  
Richard M. Stuetz

Odours from wastewater treatment plants are comprised of a mixture of various gases with hydrogen sulphide (H2S) often being the dominant constituent. Activated sludge diffusion (ASD) as a biotreatment system for odour abatement has been conducted for over 30 years but has limited broad application due to disagreement in the literature regarding the effect that ASD may have on wastewater treatment performance. The effects of continuous H2S diffusion at 25 ppmv, with weekly peaks of approximately 100 ppmv, on H2S removal efficiency and wastewater treatment performance was evaluated over a 2-month period using an activated sludge pilot plant. H2S removal averaged 100% during diffusion at 25 ppmv, and 98.9% during the 100 ppmv peak periods. A significant increase in mixed liquor volatile suspended solids concentration (P < 0.01) was observed during H2S diffusion, which may be due to an increase in H2S-degrading microorganisms. There was no adverse effect of H2S on nitrification throughout the ASD trials. Ammonia (NH3) removal was slightly better in the test receiving H2S diffusion (87.6%) than in the control (85.4%). H2S diffusion appeared to improve robustness of the AS biomass to operational upsets.


2009 ◽  
Vol 60 (9) ◽  
pp. 2439-2445 ◽  
Author(s):  
A. Lynggaard-Jensen ◽  
P. Andreasen ◽  
F. Husum ◽  
M. Nygaard ◽  
J. Kaltoft ◽  
...  

Most wastewater treatment plants have several secondary clarifiers or even more sets of clarifiers including several secondary clarifiers, and in practice it is a well known problem that equal distribution of the load to the single clarifier (or set of clarifiers) is very difficult—not to say impossible—to obtain. If the problem is neglected, quite a big percentage of the total clarifier capacity—measured as the max. allowed hydraulic load—can be lost. Further, return sludge rates are seldom controlled by any other means than as a (typically too high) percentage of the inlet to the wastewater treatment plant—giving a varying and too low suspended solids concentration in the return sludge, which again can lead to an unnecessary use of polymer in the pre-dewatering of the surplus sludge taken from the return sludge. A control of the return sludge rate divided into two parts - control of the total return sludge flow and control of how the total flow shall be distributed between the secondary clarifiers - is able to solve the mentioned problems. Finally, as shall be demonstrated on full scale wastewater treatment plants, a considerable increase of the hydraulic capacity of the treatment plants can be obtained.


2017 ◽  
Vol 35 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Michał Marzec

AbstractThe reliability of removal of selected contaminants in three technological solutions of the household sewage treatment plants was analysed in this paper. The reliability of the sewage treatment plant with activated sludge, sprinkled biological deposit and hybrid reactor (activated sludge and immersed trickling filter) was analyzed. The analysis was performed using the Weibull method for basic indicators of impurities, BOD5, COD and total suspended solids. The technological reliability of the active sludge treatment plant was 70% for BOD5, 87% for COD and 66% for total suspended solids. In the sewage treatment plant with a biological deposit, the reliability values determined were: 30% (BOD5), 60% (COD) and 67% (total suspended solids). In a treatment plant with a hybrid reactor, 30% of the BOD5and COD limit values were exceeded, while 30% of the total suspended solids were exceeded. The reliability levels are significantly lower than the acceptable levels proposed in the literature, which means that the wastewater discharged from the analysed wastewater treatment plants often exceeds the limit values of indicators specified in currently valid in Poland Regulation of the Minister of Environment for object to 2000 population equivalent.


Sign in / Sign up

Export Citation Format

Share Document