Enhancement by Glycyrrhizae Radix of hepatic metabolism of hypaconitine, a major bioactive and toxic component of Aconiti Laterlis Radix, evaluated by HPLC-TQ-MS/MS analysis

2012 ◽  
Vol 27 (5) ◽  
pp. 556-562 ◽  
Author(s):  
Hong Shen ◽  
Jie Wu ◽  
Liu-Qing Di ◽  
Ling-Ying Zhu ◽  
Jun Xu ◽  
...  
2020 ◽  
Vol 90 (1-2) ◽  
pp. 113-123
Author(s):  
Ines Schadock ◽  
Barbara G. Freitas ◽  
Irae L. Moreira ◽  
Joao A. Rincon ◽  
Marcio Nunes Correa ◽  
...  

Abstract. β-hydroxy-β-methyl butyrate (HMB) is a bioactive metabolite derived from the amino acid leucine, usually applied for muscle mass increase during physical training, as well as for muscle mass maintenance in debilitating chronic diseases. The hypothesis of the present study is that HMB is a safe supplement for muscle mass gain by strength training. Based on this, the objective was to measure changes in body composition, glucose homeostasis and hepatic metabolism of HMB supplemented mice during strength training. Two of four groups of male mice (n = 6/group) underwent an 8-week training period session (climbing stairs) with or without HMB supplementation (190 mg/kgBW per day). We observed lower body mass gain (4.9 ± 0.43% versus 1.2 ± 0.43, p < 0.001) and increased liver mass (40.9 ± 0.9 mg/gBW versus 44.8 ± 1.3, p < 0.001) in the supplemented trained group compared with the non-supplemented groups. The supplemented trained group had an increase in relative adipose tissue mass (12.4 ± 0.63 mg/gBW versus 16.1 ± 0.88, P < 0.01) compared to the non-supplemented untrained group, and an increase in fasting blood glucose (111 ± 4.58 mg/dL versus 122 ± 3.70, P < 0.05) and insulin resistance (3.79 ± 0.19 % glucose decay/min versus 2.45 ± 0.28, P < 0.05) comparing with non-supplemented trained group. Adaptive heart hypertrophy was observed only in the non-supplemented trained group (4.82 ± 0.05 mg/gBW versus 5.12 ± 0.13, P < 0.05). There was a higher hepatic insulin-like growth factor-1 expression (P = 0.002) in supplemented untrained comparing with non-supplemented untrained group. Gene expression of gluconeogenesis regulatory factors was increased by training and reduced by HMB supplementation. These results confirm that HMB supplementation associated with intensive training protocol drives changes in glucose homeostasis and liver metabolism in mice.


2011 ◽  
Vol 49 (05) ◽  
Author(s):  
S Szabó ◽  
L Márk ◽  
S Kiss ◽  
É Polyák ◽  
A Kisbenedek ◽  
...  
Keyword(s):  

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
N Fabre ◽  
E Deharo ◽  
HL Le ◽  
C Girardi ◽  
A Valentin ◽  
...  

Planta Medica ◽  
2013 ◽  
Vol 79 (10) ◽  
Author(s):  
S Dobreniecki ◽  
JR Porter
Keyword(s):  

2020 ◽  
Author(s):  
Xueshu Li ◽  
Chun-Yun Zhang ◽  
Hans-Joachim Lehmler

Polychlorinated biphenyls (PCBs) are persistent organic pollutants that are linked to adverse health outcomes. PCB tissue levels are determinants of PCB toxicity; however, it is unclear how factors, such as an altered metabolism and/or a fatty liver, affect PCB distribution in vivo. We determined the congener-specific disposition of PCBs in mice with a liver specific deletion of cytochrome P450 reductase (KO), a model of fatty liver with impaired hepatic metabolism, and wildtype (WT) mice. Male and female KO and WT mice were exposed orally to Aroclor 1254, a technical PCB mixture. PCBs were quantified in adipose, blood, brain and liver tissues by gas chromatography-mass spectrometry. PCB profiles and levels in tissues were genotype and sex dependent. PCB levels were higher in the liver from KO compared to WT mice. PCB profiles showed clear differences between tissues from the same exposure group. While experimental tissue : blood partition coefficients in KO and WT mice did not follow the trends predicted using a composition-based model, the agreement between experimental and calculated partition coefficients was still reasonable. Thus, a fatty liver and/or an impaired hepatic metabolism alter the distribution of PCBs in mice and the magnitude of the partitioning of PCBs from blood into tissues can be approximated using composition-based models.<br>


2020 ◽  
Vol 11 (4) ◽  
pp. 5059-5066
Author(s):  
Sushma B K ◽  
Raveesha H R

The present work is aimed to determine the chemical constituents in Baliospermum montanum methanolic extracts. An in vitro regenerated procedure was developed for the induction of callus from stem explant cultured on Murashige and Skoog (MS) medium fortified with various concentration and permutations of 2, 4-dichloro phenoxy acetic acid, 1-naphthalene acetic acid, 6-benzyl amino purine and gibberellic acid. FTIR &amp; GC-MS analysis was done according to standard procedure. The quantitative estimation of β-sitosterol was done by HPLC method. Maximum fresh and dry weight of callus was estimated in the combination of GA3 (0.5 mg/L) + NAA (2 mg/L) compared to other concentration. The FTIR analysis showed various functional compounds with different characteristic peak values in the extracts. Major bioactive constituents were recognized in the GC-MS analysis. Root extract revealed the existence of 1-hexadecanol, pentanoic acid, 2-(aminooxy)- and 1-hexacosanol. Leaf extract showed the presence of propanoic acid, 2-oxo-, trimethylsilyl ester, 9,12-octadecadienoic acid (z,z)-, trimethylsilyl ester, docosane, 1,22-dibromo- and pentatriacontane. Stem and stem derived callus exhibit the presence of 1,6,3,4-dihydro-2-deoxy-beta-d-lyxo-hexopyranose, n-hexadecanoic acid and pentanoic acid, 2-(aminooxy). The methanolic extract of leaf exhibited 0.2149 % of β-sitosterol content. There were no peaks observed in the root, stem and stem derived callus. Further studies are necessary for the isolation and characterization of bioactive compounds from B. montanum.


Sign in / Sign up

Export Citation Format

Share Document