Charge Storage Behaviour of α‐MoO3 in Aqueous Electrolytes — Effect of Charge Density of Electrolyte Cations

2022 ◽  
Author(s):  
Xiu Song Zhao ◽  
Ayman E. Elkholy ◽  
Timothy T. Duignan ◽  
Tanveer Hussain ◽  
Ruth Knibbe
2020 ◽  
Author(s):  
Véronique Balland ◽  
Mickaël Mateos ◽  
Kenneth D. Harris ◽  
Benoit Limoges

<p>Rechargeable aqueous aluminium batteries are the subject of growing interest, but the charge storage mechanisms at manganese oxide-based cathodes remain poorly understood with as many mechanisms as studies. Here, we use an original <i>in situ</i> spectroelectrochemical methodology to unambiguously demonstrate that the reversible proton-coupled MnO<sub>2</sub>-to-Mn<sup>2+</sup> conversion is the main charge storage mechanism occurring at MnO<sub>2</sub> cathodes over a range of slightly acidic Al<sup>3+</sup>-based aqueous electrolytes. In Zn/MnO<sub>2</sub> assemblies, this mechanism is associated with high gravimetric capacity and discharge potentials, up to 560 mAh·g<sup>-1</sup> and 1.76 V respectively, attractive efficiencies (<i>CE</i> > 98.5 % and <i>EE</i> > 80%) and excellent cyclability (> 750 cycles at 10 A·g<sup>-1</sup>). Finally, we conducted a critical analysis of the data previously published on MnO<sub>x</sub> cathodes in Al<sup>3+</sup>-based aqueous electrolytes to conclude on a universal charge storage mechanism, <i>i.e.</i>, the reversible electrodissolution/electrodeposition of MnO<sub>2</sub>.<i></i></p>


2020 ◽  
Vol 5 (17) ◽  
pp. 5316-5322
Author(s):  
Vishnu Vardhan Palem ◽  
Mustapha Balarabe Idris ◽  
Thiruvenkatam Subramaniam ◽  
Devaraj Sappani

2019 ◽  
Vol 10 (38) ◽  
pp. 8752-8763 ◽  
Author(s):  
Yee-Seul Kim ◽  
Kenneth D. Harris ◽  
Benoît Limoges ◽  
Véronique Balland

The hidden role of hexaaquo metal ion complexes in the proton-coupled electron charge storage at a metal oxide electrode.


2006 ◽  
Vol 10 (01) ◽  
pp. 22-32 ◽  
Author(s):  
Andrey B. Lysenko ◽  
Patchanita Thamyongkit ◽  
Izabela Schmidt ◽  
James R. Diers ◽  
David F. Bocian ◽  
...  

Porphyrinic molecules have been shown to be viable candidates for a molecular-based information storage medium on the basis of redox activity. An optimal redox-based information storage medium requires a large charge density in the molecular footprint on the anchoring substrate. The use of dimeric versus monomeric architectures affords one route to achieving increased charge density without sacrificing surface cross sectional area. Towards this goal, a series of zinc and cobalt containing porphyrin dimers has been prepared and characterized. The interporphyrin linkages in the dimers include p-phenylene, ethynyl, 1,4-butadiynyl, and ethynylphenylethynyl joining porphyrin meso-positions; Crossley-type fusion bridging porphyrin β-positions, and Osuka-type triple fusions bridging one meso- and two β-positions. The electrochemical features of each dimer have been evaluated.


2017 ◽  
Vol 53 (86) ◽  
pp. 11786-11789 ◽  
Author(s):  
Nutthaphon Phattharasupakun ◽  
Juthaporn Wutthiprom ◽  
Surasak Kaenket ◽  
Thana Maihom ◽  
Jumras Limtrakul ◽  
...  

A proton-conducting coordination polymer of Zn2+ phosphate and protonated imidazole has been used as a novel supercapacitor material in aqueous electrolytes.


2019 ◽  
Author(s):  
Yee-Seul Kim ◽  
Kenneth D. Harris ◽  
Benoit Limoges ◽  
Véronique Balland

<p>The main objective of the work is to elucidate and rationalize the role played by an Al<sup>3+</sup>-based aqueous electrolyte on the charge accumulated in model mesoporous TiO<sub>2</sub> electrodes and to decipher the chemical nature of the inserting cation.<br></p>


2020 ◽  
Author(s):  
Véronique Balland ◽  
Mickaël Mateos ◽  
Kenneth D. Harris ◽  
Benoit Limoges

<p>Rechargeable aqueous aluminium batteries are the subject of growing interest, but the charge storage mechanisms at manganese oxide-based cathodes remain poorly understood with as many mechanisms as studies. Here, we use an original <i>in situ</i> spectroelectrochemical methodology to unambiguously demonstrate that the reversible proton-coupled MnO<sub>2</sub>-to-Mn<sup>2+</sup> conversion is the main charge storage mechanism occurring at MnO<sub>2</sub> cathodes over a range of slightly acidic Al<sup>3+</sup>-based aqueous electrolytes. In Zn/MnO<sub>2</sub> assemblies, this mechanism is associated with high gravimetric capacity and discharge potentials, up to 560 mAh·g<sup>-1</sup> and 1.76 V respectively, attractive efficiencies (<i>CE</i> > 98.5 % and <i>EE</i> > 80%) and excellent cyclability (> 750 cycles at 10 A·g<sup>-1</sup>). Finally, we conducted a critical analysis of the data previously published on MnO<sub>x</sub> cathodes in Al<sup>3+</sup>-based aqueous electrolytes to conclude on a universal charge storage mechanism, <i>i.e.</i>, the reversible electrodissolution/electrodeposition of MnO<sub>2</sub>.<i></i></p>


2020 ◽  
Author(s):  
Mickaël Mateos ◽  
Nikolina Makivic ◽  
Yee-Seul Kim ◽  
Benoit Limoges ◽  
Véronique Balland

<p>Rechargeable batteries based on MnO2 cathodes, able to operate in mild aqueous electrolytes, have attracted remarkable attention due to their appealing features for the design of low-cost stationary energy storage devices. However, the charge/discharge mechanism of MnO2 in such media is still unclear and a matter of debate. Here, an in-depth quantitative spectroelectrochemical analysis of MnO2 thin-films provides a set of important new mechanistic insights. A major finding is that charge storage occurs through the reversible two electron faradaic conversion of MnO2 into water-soluble Mn2+ in the presence of a wide range of weak Brønsted acids, including the [Zn(H2O)6]2+ or [Mn(H2O)6]2+ complexes commonly present in aqueous Zn/MnO2 batteries. Furthermore, it is evidenced that buffered electrolytes loaded with Mn2+ are ideal to achieve highly reversible conversion of MnO2 with both high gravimetric capacity and remarkably stable charging/discharging potentials. In the most favorable case, a record gravimetric capacity of 450 mA·h·g-1 was obtained at a high rate of 1.6 A·g-1, with a coulombic efficiency close to 100% and a MnO2 utilization of 84%. Overall, the present results challenge the common view on MnO2 charge storage mechanism in mild aqueous electrolytes and underline the benefit of buffered electrolytes for high-performance rechargeable aqueous batteries.<br></p>


2020 ◽  
Author(s):  
Mickaël Mateos ◽  
Nikolina Makivic ◽  
Yee-Seul Kim ◽  
Benoit Limoges ◽  
Véronique Balland

<p>Rechargeable batteries based on MnO2 cathodes, able to operate in mild aqueous electrolytes, have attracted remarkable attention due to their appealing features for the design of low-cost stationary energy storage devices. However, the charge/discharge mechanism of MnO2 in such media is still unclear and a matter of debate. Here, an in-depth quantitative spectroelectrochemical analysis of MnO2 thin-films provides a set of important new mechanistic insights. A major finding is that charge storage occurs through the reversible two electron faradaic conversion of MnO2 into water-soluble Mn2+ in the presence of a wide range of weak Brønsted acids, including the [Zn(H2O)6]2+ or [Mn(H2O)6]2+ complexes commonly present in aqueous Zn/MnO2 batteries. Furthermore, it is evidenced that buffered electrolytes loaded with Mn2+ are ideal to achieve highly reversible conversion of MnO2 with both high gravimetric capacity and remarkably stable charging/discharging potentials. In the most favorable case, a record gravimetric capacity of 450 mA·h·g-1 was obtained at a high rate of 1.6 A·g-1, with a coulombic efficiency close to 100% and a MnO2 utilization of 84%. Overall, the present results challenge the common view on MnO2 charge storage mechanism in mild aqueous electrolytes and underline the benefit of buffered electrolytes for high-performance rechargeable aqueous batteries.<br></p>


Sign in / Sign up

Export Citation Format

Share Document