Layered Laminated Glass Elements with High Load‐Bearing Capacities

ce/papers ◽  
2021 ◽  
Vol 4 (6) ◽  
pp. 333-347
Author(s):  
Octavian Bunea ◽  
Julian Hänig ◽  
Timo Saukko ◽  
Ingo Stelzer ◽  
Bernhard Weller
Friction ◽  
2021 ◽  
Author(s):  
Luyao Gao ◽  
Xiaoduo Zhao ◽  
Shuanhong Ma ◽  
Zhengfeng Ma ◽  
Meirong Cai ◽  
...  

AbstractSilicone elastomers-based materials have been extensively involved in the field of biomedical devices, while their use is extremely restricted due to the poor surface lubricity and inherent hydrophobicity. This paper describes a novel strategy for generating a robust layered soft matter lubrication coating on the surface of the polydimethylsiloxane (PDMS) silicone elastomer, by entangling thick polyzwitterionic polyelectrolyte brush of poly (sulfobetaine methacrylate) (PSBMA) into the sub-surface of the initiator-embedded stiff hydrogel coating layer of P(AAm-co-AA-co-HEMA-Br)/Fe, to achieve a unified low friction and high load-bearing properties. Meanwhile, the stiff hydrogel layer with controllable thickness is covalently anchored on the surface of PDMS by adding iron powder to provide catalytic sites through surface catalytically initiated radical polymerization (SCIRP) method and provides high load-bearing capacity, while the topmost brush/hydrogel composite layer is highly effective for aqueous lubrication. Their synergy effects are capable of attaining low friction coefficient (COFs) under wide range of loaded condition in water environment with steel ball as sliding pair. Furthermore, the influence of mechanical modulus of the stiff hydrogel layer on the lubrication performance of layered coating is investigated, for which the COF is the lowest only when the modulus of the stiff hydrogel layer well matches the PDMS substrate. Surprisingly, the COF of the modified PDMS could remain low friction (COF < 0.05) stably after encountering 50,000 sliding cycles under 10 N load. Finally, the surface wear characterizations prove the robustness of the layered lubricating coating. This work provides a new route for engineering lubricious silicon elastomer with low friction, high load-bearing capacity, and considerable durability.


Biomaterials ◽  
2006 ◽  
Vol 27 (7) ◽  
pp. 1071-1080 ◽  
Author(s):  
Xin Xin Shao ◽  
Dietmar W. Hutmacher ◽  
Saey Tuan Ho ◽  
James C.H. Goh ◽  
Eng Hin Lee

2021 ◽  
Vol 883 ◽  
pp. 3-10
Author(s):  
Fabian Kappe ◽  
Mathias Bobbert ◽  
Gerson Meschut

The increasing use of multi-material constructions lead to a continuous increase in the use of mechanical joining techniques due to the wide range of joining possibilities as well as the high load-bearing capacities of the joints. Nevertheless, the currently rigid tool systems are not able to react to changing boundary conditions, like changing the material-geometry-combination. Therefore research work is crucial with regard to versatile joining systems. In this paper, a new approach for a versatile self-piercing riveting process considering the joining system as well as the auxiliary joining part is presented.


2018 ◽  
Vol 10 (3) ◽  
pp. 2965-2975 ◽  
Author(s):  
Zechao Li ◽  
Yongxin Wang ◽  
Xiaoying Cheng ◽  
Zhixiang Zeng ◽  
Jinlong Li ◽  
...  

Author(s):  
D Xing ◽  
W Chen ◽  
J Ma ◽  
L Zhao

In nature, bamboo develops an excellent structure to bear nature forces, and it is very helpful for designing thin-walled cylindrical shells with high load-bearing efficiency. In this article, the cross-section of bamboo is investigated, and the feature of the gradual distribution of vascular bundles in bamboo cross-section is outlined. Based on that, a structural bionic design for thin-walled cylindrical shells is presented, of which the manufacturability is also taken into consideration. The comparison between the bionic thin-walled cylindrical shell and a simple hollow one with the same weight showed that the load-bearing efficiency was improved by 44.7 per cent.


2011 ◽  
Vol 341-342 ◽  
pp. 833-837
Author(s):  
Xun Wang ◽  
Qi Lin Zhang ◽  
Jun Chen ◽  
Zhi Xiong Tao ◽  
Jun Chen

Combining with load bearing capacity tests, the laminated glass simply supported on four sides subjected to bending is analyzed using the finite element software ANSYS. Based on the theoretical and experimental deflection results, the accurate calculation model is established. In order to calculate the deflection of laminated glass subjected to short-time loading such as wind load based on different codes, the equivalent thickness of laminated glass based on Chinese code 2003 and European code is calculated, respectively. Finally, on the basis of many finite element analyses, load bearing capacity tests and code values, the formulas for calculating maximum deflectiont of four-sides supported laminated glass is revised in “Technical code for glass curtain wall engineering” (China) and corresponding correction coefficient is given.


2019 ◽  
Author(s):  
Petr Hála ◽  
Radoslav Sovják ◽  
Markéta Munduchová ◽  
Vít Majer ◽  
Tomáš Mičunek
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document