Structural bionic design for thin-walled cylindrical shell against buckling under axial compression

Author(s):  
D Xing ◽  
W Chen ◽  
J Ma ◽  
L Zhao

In nature, bamboo develops an excellent structure to bear nature forces, and it is very helpful for designing thin-walled cylindrical shells with high load-bearing efficiency. In this article, the cross-section of bamboo is investigated, and the feature of the gradual distribution of vascular bundles in bamboo cross-section is outlined. Based on that, a structural bionic design for thin-walled cylindrical shells is presented, of which the manufacturability is also taken into consideration. The comparison between the bionic thin-walled cylindrical shell and a simple hollow one with the same weight showed that the load-bearing efficiency was improved by 44.7 per cent.

1937 ◽  
Vol 15a (4) ◽  
pp. 49-58 ◽  
Author(s):  
J. N. Goodier

The thermal stress in thin-walled cylinders of any cross section has been investigated for internal and external temperatures each varying in any manner round the circumference but not in the axial direction. The thickness also may vary round the circumference.A method is given for calculating the stress from given temperature distributions, whatever the shape of the cross section. The stress is evaluated for uniform, but different, inside and outside temperatures.The circular cylinder is treated in detail and the stress found for the general case of circumferential variation. It is shown that the maximum stress will depend only on the temperature distributions and the material, and not on the thickness or diameter of the cylinder.


2019 ◽  
Vol 3 (1) ◽  
pp. 46-52
Author(s):  
Nuriddin Kurbonovich Esanov ◽  

The paper deals with the free oscillations of pipelines as thin cylindrical shells with regard to internal pressure. The pipeline is presented in the form of a closed cylindrical shell with a radius of the midline of the cross section. The material is considered isotropic with density, modulus of elasticity, and Poisson’s ratio


Author(s):  
Peng Jiao ◽  
Zhiping Chen ◽  
He Ma ◽  
Delin Zhang ◽  
Jihang Wu ◽  
...  

Abstract Thin-walled cylindrical shell structure not only shows the highly efficient load carrying capacity but also is vulnerable to buckling instability failure. In practical application, these structures are more easily subjected to locally distributed axial compression load, which is a more common non-uniform loading case. However, until now, the buckling behaviors of thin-walled cylindrical shells under this kind of loading case are still unclear, and there are also few relevant buckling experiments. In order to fill this research gap as well as reveal the relevant failure mechanism of thin-walled cylindrical shell structures, in this paper buckling tests of thin-walled metallic cylindrical shell structures under non-uniform axial compression loads are successfully performed. In this regard, the design and characteristics of two cylindrical shell test specimens subjected to different pattern of non-uniform compression loads are mainly introduced. Meanwhile, as the important parts for conducting this buckling experiment, the axial compression buckling test rig as well as the real-time acquisition measurement system is also presented in details. Results indicate that locally distributed axial compression loads play a pivotal role in the buckling behaviors of thin-walled cylindrical shell, not matter from the point of view of load carrying capacity, shell deformation process or failure mode. The experiments carried out in this work can be served as a benchmark for related numerical simulation afterwards. Furthermore, the obtained test results can also provide some guides for the design and application of thin-walled cylindrical shell in actual engineering.


2021 ◽  
Vol 166 ◽  
pp. 108118
Author(s):  
Peng Jiao ◽  
Zhiping Chen ◽  
He Ma ◽  
Peng Ge ◽  
Yanan Gu ◽  
...  

2016 ◽  
Vol 12 (3) ◽  
pp. 558-576 ◽  
Author(s):  
Aníbal J.J. Valido ◽  
João Barradas Cardoso

Purpose The purpose of this paper is to present a design sensitivity analysis continuum formulation for the cross-section properties of thin-walled laminated composite beams. These properties are expressed as integrals based on the cross-section geometry, on the warping functions for torsion, on shear bending and shear warping, and on the individual stiffness of the laminates constituting the cross-section. Design/methodology/approach In order to determine its properties, the cross-section geometry is modeled by quadratic isoparametric finite elements. For design sensitivity calculations, the cross-section is modeled throughout design elements to which the element sensitivity equations correspond. Geometrically, the design elements may coincide with the laminates that constitute the cross-section. Findings The developed formulation is based on the concept of adjoint system, which suffers a specific adjoint warping for each of the properties depending on warping. The lamina orientation and the laminate thickness are selected as design variables. Originality/value The developed formulation can be applied in a unified way to open, closed or hybrid cross-sections.


2016 ◽  
Vol 62 (2) ◽  
pp. 229-264 ◽  
Author(s):  
A. Szychowski

Abstract Thin-walled bars currently applied in metal construction engineering belong to a group of members, the cross-section res i stance of which is affected by the phenomena of local or distortional stability loss. This results from the fact that the cross-section of such a bar consists of slender-plate elements. The study presents the method of calculating the resistance of the cross-section susceptible to local buckling which is based on the loss of stability of the weakest plate (wall). The “Critical Plate” (CP) was identified by comparing critical stress in cross-section component plates under a given stress condition. Then, the CP showing the lowest critical stress was modelled, depending on boundary conditions, as an internal or cantilever element elastically restrained in the restraining plate (RP). Longitudinal stress distribution was accounted for by means of a constant, linear or non-linear (acc. the second degree parabola) function. For the critical buckling stress, as calculated above, the local critical resistance of the cross-section was determined, which sets a limit on the validity of the Vlasov theory. In order to determine the design ultimate resistance of the cross-section, the effective width theory was applied, while taking into consideration the assumptions specified in the study. The application of the Critical Plate Method (CPM) was presented in the examples. Analytical calculation results were compared with selected experimental findings. It was demonstrated that taking into consideration the CP elastic restraint and longitudinal stress variation results in a more accurate representation of thin-walled element behaviour in the engineering computational model.


Sign in / Sign up

Export Citation Format

Share Document