Heterometallic Na6 Co3 Phenylsilsesquioxane Exhibiting Slow Dynamic Behavior in its Magnetization

2015 ◽  
Vol 21 (51) ◽  
pp. 18563-18565 ◽  
Author(s):  
Alexey N. Bilyachenko ◽  
Alexey I. Yalymov ◽  
Alexander A. Korlyukov ◽  
Jérôme Long ◽  
Joulia Larionova ◽  
...  
2019 ◽  
Vol 25 (23-24) ◽  
pp. 2863-2874 ◽  
Author(s):  
Jingjing Zhang ◽  
Diyi Chen ◽  
Hao Zhang ◽  
Beibei Xu ◽  
Huanhuan Li ◽  
...  

Hydraulic generating systems are widely modeled in the literature for investigating their stability properties by means of transfer functions representing the dynamic behavior of the reservoir, penstock, surge tank, hydro-turbine, and the generator. Traditionally, in these models the electrical load is assumed constant to simplify the modeling process. This assumption can hide interesting dynamic behaviors caused by fluctuation of the load as actually occurred. Hence, in this study, the electrical load characterized with periodic excitation is introduced into a hydraulic generating system and the responses of the system show a novel dynamic behavior called the fast–slow dynamic phenomenon. To reveal the nature of this phenomenon, the effects of the three parameters (i.e., differential adjustment coefficient, amplitude, and frequency) on the dynamic behaviors of the hydraulic generating system are investigated, and the corresponding change rules are presented. The results show that the intensity of the fast–slow dynamic behaviors varies with the change of each parameter, which provides reference for the quantification of the hydraulic generating system parameters. More importantly, these results not only present rich nonlinear phenomena induced by multi-timescales, but also provide some theoretical bases for maintaining the safe and stable operation of a hydropower station.


2017 ◽  
Vol 32 (4) ◽  
pp. 3321-3322 ◽  
Author(s):  
Zaiyu Chen ◽  
Minghui Yin ◽  
Yun Zou ◽  
Ke Meng ◽  
ZhaoYang Dong

2020 ◽  
Vol 21 (6) ◽  
pp. 619
Author(s):  
Kostandin Gjika ◽  
Antoine Costeux ◽  
Gerry LaRue ◽  
John Wilson

Today's modern internal combustion engines are increasingly focused on downsizing, high fuel efficiency and low emissions, which requires appropriate design and technology of turbocharger bearing systems. Automotive turbochargers operate faster and with strong engine excitation; vibration management is becoming a challenge and manufacturers are increasingly focusing on the design of low vibration and high-performance balancing technology. This paper discusses the synchronous vibration management of the ball bearing cartridge turbocharger on high-speed balancer and it is a continuation of papers [1–3]. In a first step, the synchronous rotordynamics behavior is identified. A prediction code is developed to calculate the static and dynamic performance of “ball bearing cartridge-squeeze film damper”. The dynamic behavior of balls is modeled by a spring with stiffness calculated from Tedric Harris formulas and the damping is considered null. The squeeze film damper model is derived from the Osborne Reynolds equation for incompressible and synchronous fluid loading; the stiffness and damping coefficients are calculated assuming that the bearing is infinitely short, and the oil film pressure is modeled as a cavitated π film model. The stiffness and damping coefficients are integrated on a rotordynamics code and the bearing loads are calculated by converging with the bearing eccentricity ratio. In a second step, a finite element structural dynamics model is built for the system “turbocharger housing-high speed balancer fixture” and validated by experimental frequency response functions. In the last step, the rotating dynamic bearing loads on the squeeze film damper are coupled with transfer functions and the vibration on the housings is predicted. The vibration response under single and multi-plane unbalances correlates very well with test data from turbocharger unbalance masters. The prediction model allows a thorough understanding of ball bearing turbocharger vibration on a high speed balancer, thus optimizing the dynamic behavior of the “turbocharger-high speed balancer” structural system for better rotordynamics performance identification and selection of the appropriate balancing process at the development stage of the turbocharger.


2006 ◽  
Vol 12 (4) ◽  
pp. 33-37
Author(s):  
V.E. Shatikhin ◽  
◽  
L.P. Semenov ◽  
V.S. Khoroshylov ◽  
V.M. Popel' ◽  
...  
Keyword(s):  

Author(s):  
Yuichi Niibori ◽  
Yasunori Kasuga ◽  
Hiroshi Kokubun ◽  
Kazuki Iijima ◽  
Hitoshi Mimura

Sign in / Sign up

Export Citation Format

Share Document