scholarly journals The Significance of Metal Coordination in Imidazole‐Functionalized Metal–Organic Frameworks for Carbon Dioxide Utilization

2020 ◽  
Vol 26 (60) ◽  
pp. 13606-13610
Author(s):  
William R. Webb ◽  
Matthew E. Potter ◽  
Daniel J. Stewart ◽  
Stuart J. Elliott ◽  
Pier J. A. Sazio ◽  
...  
Author(s):  
Manpreet Singh ◽  
Athulya S. Palakkal ◽  
Renjith S. Pillai ◽  
Subhadip Neogi

Metal-organic frameworks (MOFs) have surfaced as incipient class of multifaceted materials for selective carbon dioxide (CO2) adsorption and luminescent detection of assorted classes of lethal organo-aromatics, where functional group assisted...


2021 ◽  
Author(s):  
Yurong Shan ◽  
Dexiang Liu ◽  
Chunyan Xu ◽  
Peng Zhan ◽  
Hui Wang ◽  
...  

In this work, PMA@NH2-MIL-68(Rh) with a mangosteen spherical structure was successfully synthesized by a hydrothermal method for the photocatalytic reduction of carbon dioxide. The electronic structure and morphology of the...


2020 ◽  
Vol 40 ◽  
pp. 156-170 ◽  
Author(s):  
Ping Shao ◽  
Luocai Yi ◽  
Shumei Chen ◽  
Tianhua Zhou ◽  
Jian Zhang

CrystEngComm ◽  
2017 ◽  
Vol 19 (36) ◽  
pp. 5346-5350 ◽  
Author(s):  
Jinjie Qian ◽  
Jinni Shen ◽  
Qipeng Li ◽  
Yue Hu ◽  
Shaoming Huang

The theoretically optimal adsorption locations in hydroxyl (OH)-decorated metal–organic frameworks show that the captured CO2 molecules interact with the cis-μ2-OH groups in an end-on mode, which shows a moderate to weak hydrogen bond.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7620
Author(s):  
Meryem Saidi ◽  
Phuoc Hoang Ho ◽  
Pankaj Yadav ◽  
Fabrice Salles ◽  
Clarence Charnay ◽  
...  

This paper reports on the comparison of three zirconium-based metal organic frameworks (MOFs) for the capture of carbon dioxide and ethanol vapour at ambient conditions. In terms of efficiency, two parameters were evaluated by experimental and modeling means, namely the nature of the ligands and the size of the cavities. We demonstrated that amongst three Zr-based MOFs, MIP-202 has the highest affinity for CO2 (−50 kJ·mol−1 at low coverage against around −20 kJ·mol−1 for MOF-801 and Muc Zr MOF), which could be related to the presence of amino functions borne by its aspartic acid ligands as well as the presence of extra-framework anions. On the other side, regardless of the ligand size, these three materials were able to adsorb similar amounts of carbon dioxide at 1 atm (between 2 and 2.5 µmol·m−2 at 298 K). These experimental findings were consistent with modeling studies, despite chemisorption effects, which could not be taken into consideration by classical Monte Carlo simulations. Ethanol adsorption confirmed these results, higher enthalpies being found at low coverage for the three materials because of stronger van der Waals interactions. Two distinct sorption processes were proposed in the case of MIP-202 to explain the shape of the enthalpic profiles.


Sign in / Sign up

Export Citation Format

Share Document