ChemInform Abstract: KINETICS OF OXIDATION OF AROMATIC ALDEHYDES BY POTASSIUM BROMATE IN ACID MEDIUM

1980 ◽  
Vol 11 (32) ◽  
Author(s):  
N. K. MURTHY ◽  
P. R. RAO ◽  
E. V. SUNDARAM
2009 ◽  
Vol 6 (s1) ◽  
pp. 522-528 ◽  
Author(s):  
S. Sheik Mansoor ◽  
S. Syed Shafi

The kinetics of oxidation of benzaldehyde (BA) andpara-substituted benzaldehydes by imidazolium dichromate (IDC) has been studied in aqueous acetic acid medium in the presence of perchloric acid. The reaction is first order each in [IDC], [Substrate] and [H+]. The reaction rates have been determined at different temperatures and the activation parameters calculated. Electron withdrawing substituents are found to increase the reaction and electron releasing substituents are found to retard the rate of the reaction and the rate data obey the Hammett relationship. The products of the oxidation are the corresponding acids. The rate decreases with the increase in the water content of the medium. A suitable mechanism is proposed.


2004 ◽  
Vol 59 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Mahesha Shetty ◽  
B. Thimme Gowda

Abstract To study the variation of oxidative strengths of N-chloro-arenesulphonamides with substitution in the benzene ring, six mono- and five di-substituted N-chloro-arenesulphonamides are employed as oxidants for studying the kinetics of oxidation of two neutral amino acids, L-leucine and Lisoleucine in aqueous acid medium. The N-chloro-arenesulphonamides studied are of the constitution: ArSO2NaNCl·H2O (where Ar = C6H5, 4-CH3C6H4, 4-C2H5C6H4, 4-FC6H4, 4-ClC6H4, 4-BrC6H4, 2,3-(CH3)2C6H3, 2,4-(CH3)2C6H3, 2-CH3-4-ClC6H3, 2,4-Cl2C6H3, and 3,4-Cl2C6H3). The reactions show second order kinetics in [oxidant], fractional order in [amino acid] and inverse dependence on [H+]. Addition of the reduced product of the oxidants or variation in ionic strength of the medium has no significant effect on the rates of oxidations. A two-pathway mechanism is considered to explain the experimental results. Effective oxidizing species of the oxidants is Cl+ in different forms. Therefore the oxidising strengths of N-chloro-arenesulphonamides depend on the ease with which Cl+ is released from them. The study reveals that the introduction of substituent in the benzene ring of the oxidant affects both the kinetic and thermodynamic data for the oxidations The electron releasing groups such as CH3 generally inhibit the rates, while electron-withdrawing groups such as Cl enhance this ability, as the electron withdrawing groups ease the release of Cl+ from the reagents and hence increase the oxidising strengths. The on Ea and logA and validity of the Hammett and isokinetic relationships for the oxidations are also analysed.


2004 ◽  
Vol 1 (2) ◽  
pp. 127-131 ◽  
Author(s):  
N. A. Mohamed Farook ◽  
R. Prabaharan ◽  
S. Rahini ◽  
R. Senthil Kumar ◽  
G. Rajamahendran ◽  
...  

The kinetics of oxidation of some amino acids namely, glycine, alanine, aspartic acid, arginine, and histidine, (AA) byN-chlorosaccharin (NCSA) in aqueous acetic acid medium in the presence of perchloric acid have been investigated. The observed rate of oxidation is first order in [AA], [NCSA] and of inverse fractional order in [H+]. The main product of the oxidation is the corresponding aldehyde. The ionic strength on the reaction rate has no significant effect. The effect of changing the dielectric constant of the medium on the rate indicates the reaction to be of dipole-dipole type. Hypochlorous acid has been postulated as the reactive oxidizing species. The reaction constants involved in the mechanism are derived. The activation parameters are computed with respect to slow step of the mechanism.


Author(s):  
S. Parimala Vaijayanthi ◽  
N. Mathiyalagan

The kinetics of oxidation of amino acids namely, alanine, glycine, leucine, phenyl alanine and valine by N-chloropyrazinamide (NCPZA) in aqueous acetic acid medium in the presence of hydrochloric acid have been investigated. The observed rate of oxidation is first order in [NCPZA], [H+] and [Clˉ]. The order with respect to [amino acid] is zero. The rate of oxidation increases with increase in the percentage of acetic acid. The reaction rate increases slightly with increase in ionic strength, while retards with addition of pyrazinamide. Arrhenius and thermodynamic activation parameters have been evaluated from Arrhenius plot by studying the reaction at different temperatures. A most probable reaction mechanism has been proposed and an appropriate rate law is deduced toaccount for the observed kinetic data.


Sign in / Sign up

Export Citation Format

Share Document