ChemInform Abstract: ACID-CATALYZED HYDROLYSIS OF A PHENYLKETENE DITHIOACETAL. REVERSIBLE PROTONATION OF THE CARBON-CARBON DOUBLE BOND

1983 ◽  
Vol 14 (41) ◽  
Author(s):  
T. OKUYAMA ◽  
T. FUENO
2010 ◽  
Vol 5 (5) ◽  
pp. 1934578X1000500
Author(s):  
Jixun Zhan ◽  
E. M. Kithsiri Wijeratne ◽  
A. A. Leslie Gunatilaka

Biotransformation of monocillin I (1) by Beauveria bassiana ATCC 7159 was investigated. Two new derivatives 2 and 3 were isolated and identified on the basis of the spectroscopic data. Compounds 2 and 3 are synthesized by hydration at 10,11-double bond and hydrolysis of 14,15-epoxide, respectively. The R configuration of 11-OH in 2 was established by the modified 2-methoxy-2-trifluoromethylphenylacetic acid (MTPA) method. The conversion of 1 to 2 and 3 was reconstituted in an acid solution, indicating that the formation of 2 and 3 is an acid-catalyzed instead of an enzymatic process.


1977 ◽  
Vol 55 (3) ◽  
pp. 548-551 ◽  
Author(s):  
Robert A. McClelland

The hydrolysis of vinyl sulfides in acid solutions is shown to proceed via a mechanism analogous to that of vinyl ethers, with slow proton transfer to the carbon–carbon double bond to produce a sulfur stabilized carbonium ion. Relative rates of hydrolysis of compounds RXCH=CH2 are CH3S—, 41; CH3O—, 1500; C6H5S—, 1; and C6H5O—, 10.5. This order is compared with that of other systems which produce similar stabilized carbonium ions.


1985 ◽  
Vol 50 (4) ◽  
pp. 845-853 ◽  
Author(s):  
Miloslav Šorm ◽  
Miloslav Procházka ◽  
Jaroslav Kálal

The course of hydrolysis of an ester, 4-acetoxy-3-nitrobenzoic acid catalyzed with poly(1-methyl-3-allylimidazolium bromide) (IIa), poly[l-methyl-3-(2-propinyl)imidazolium chloride] (IIb) and poly[l-methyl-3-(2-methacryloyloxyethyl)imidazolium bromide] (IIc) in a 28.5% aqueous ethanol was investigated as a function of pH and compared with low-molecular weight models, viz., l-methyl-3-alkylimidazolium bromides (the alkyl group being methyl, propyl, and hexyl, resp). Polymers IIb, IIc possessed a higher activity at pH above 9, while the models were more active at a lower pH with a maximum at pH 7.67. The catalytic activity at the higher pH is attributed to an attack by the OH- group, while at the lower pH it is assigned to a direct attack of water on the substrate. The rate of hydrolysis of 4-acetoxy-3-nitrobenzoic acid is proportional to the catalyst concentration [IIc] and proceeds as a first-order reaction. The hydrolysis depends on the composition of the solvent and was highest at 28.5% (vol.) of ethanol in water. The hydrolysis of a neutral ester, 4-nitrophenyl acetate, was not accelerated by IIc.


1980 ◽  
Vol 45 (7) ◽  
pp. 1959-1963 ◽  
Author(s):  
Dušan Joniak ◽  
Božena Košíková ◽  
Ludmila Kosáková

Methyl 4-O-(3-methoxy-4-hydroxybenzyl) and methyl 4-O-(3,5-dimethoxy-4-hydroxybenzyl)-α-D-glucopyranoside and their 6-O-isomers were prepared as model substances for the ether lignin-saccharide bond by reductive cleavage of corresponding 4,6-O-benzylidene derivatives. Kinetic study of acid-catalyzed hydrolysis of the compounds prepared was carried out by spectrophotometric determination of the benzyl alcoholic groups set free, after their reaction with quinonemonochloroimide, and it showed the low stability of the p-hydroxybenzyl ether bond.


1986 ◽  
Vol 51 (12) ◽  
pp. 2786-2797
Author(s):  
František Grambal ◽  
Jan Lasovský

Kinetics of formation of 1,2,4-oxadiazoles from 24 substitution derivatives of O-benzoylbenzamidoxime have been studied in sulphuric acid and aqueous ethanol media. It has been found that this medium requires introduction of the Hammett H0 function instead of the pH scale beginning as low as from 0.1% solutions of mineral acids. Effects of the acid concentration, ionic strength, and temperature on the reaction rate and on the kinetic isotope effect have been followed. From these dependences and from polar effects of substituents it was concluded that along with the cyclization to 1,2,4-oxadiazoles there proceeds hydrolysis to benzamidoxime and benzoic acid. The reaction is thermodynamically controlled by the acid-base equilibrium of the O-benzylated benzamidoximes.


Sign in / Sign up

Export Citation Format

Share Document