ChemInform Abstract: TEMPERATURE DEPENDENCE OF THE ION-MOLECULE REACTIONS ATOMIC NITROGEN(1+) + CARBON MONOXIDE, ATOMIC CARBON(1+) + NITRIC OXIDE, AND ATOMIC CARBON(1+), CARBONYL(1+), CARBON DIOXIDE(1+) + MOLECULAR OXYGEN FROM 90-450 K

1984 ◽  
Vol 15 (36) ◽  
Author(s):  
T. M. MILLER ◽  
R. E. WETTERSKOG ◽  
J. F. PAULSON
1959 ◽  
Vol 12 (2) ◽  
pp. 114 ◽  
Author(s):  
JD Blackwood ◽  
FK McTaggart

Atomic oxygen, produced by dissociation of molecular oxygen in a radio frequency field, will react with amorphous or graphitic carbon at room temperatures and both carbon monoxide and carbon dioxide appear in the product gases. Carbon monoxide appears to be the primary product of oxidation of carbon, the carbon dioxide being produced by direct combination of carbon monoxide with oxygen which takes place mainly at the carbon surface. Atomic oxygen will also react with carbon dioxide to produce carbon monoxide and molecular oxygen but the quantity of carbon monoxide produced by this reaction is small compared to that produced by direct oxidation of the carbon.


1955 ◽  
Vol 33 (5) ◽  
pp. 843-848
Author(s):  
T. M. Rohr ◽  
W. Albert Noyes Jr.

The addition of ethane to nitrogen dioxide either during exposure to radiation transmitted by pyrex, or afterwards, reduces the amount of oxygen formed. At room temperature this is apparently due to the effectiveness of ethane in promoting the reverse reaction of nitric oxide and oxygen to form nitrogen dioxide. At temperatures over 100° there is a reaction which uses oxygen atoms produced in the primary process. Nitroethane (or nitrosoethane) is formed along with carbon monoxide, carbon dioxide, and some methane. The results suggest that acetaldehyde is an intermediate, but acetaldehyde could not be detected because it would react thermally with nitrogen dioxide. It is not possible to give a complete explanation of the results, but suggestions can be made which might form the basis for later work.


Sign in / Sign up

Export Citation Format

Share Document