ChemInform Abstract: Porous Silicon Oxide Layer Formation by the Electrochemical Treatment of a Porous Silicon Layer.

ChemInform ◽  
1990 ◽  
Vol 21 (47) ◽  
Author(s):  
M. YAMANA ◽  
N. KASHIWAZAKI ◽  
A. KINOSHITA ◽  
T. NAKANO ◽  
M. YAMAMOTO ◽  
...  
1990 ◽  
Vol 137 (9) ◽  
pp. 2925-2927 ◽  
Author(s):  
M. Yamana ◽  
N. Kashiwazaki ◽  
A. Kinoshita ◽  
T. Nakano ◽  
M. Yamamoto ◽  
...  

2019 ◽  
Vol 11 (12) ◽  
pp. 1218-1224
Author(s):  
Dao Tran Cao ◽  
Cao Tuan Anh ◽  
Luong Truc Quynh Ngan

So far, while producing porous silicon (PSi) with anodic etching of silicon in an aqueous solution of hydrofluoric acid, many researchers (including us) have obtained the crack-into-pieces (or mosaic) structure. Most of the authors believed that the cause of this structure is the collapse and the cracking of the porous, especially highly porous, silicon layer which took place during the drying of PSi after fabrication. However, our study showed that the mosaic structure was formed right during the course of silicon anodization at high anodic current density. Furthermore, our study also showed that at high anodic current density the real silicon etching has been replaced by the growth of a silicon oxide layer. This is a layer of another substance that grows on silicon, so when the layer is too thick (which is obtained when the anodic current density is too high and/or the anodization time is too long) it will crack, creating mosaic pieces. When the silicon oxide layer is cracked, the locations around the cracks will be etched more violently than elsewhere, creating trenches. Thus, the mosaic structure with mosaic pieces emerged between the trenches has formed.


2017 ◽  
Vol 68 (7) ◽  
pp. 53-57 ◽  
Author(s):  
Martin Kopani ◽  
Milan Mikula ◽  
Daniel Kosnac ◽  
Jan Gregus ◽  
Emil Pincik

AbstractThe morphology and chemical bods of p-type and n-type porous Si was compared. The surface of n-type sample is smooth, homogenous without any features. The surface of p-type sample reveals micrometer-sized islands. FTIR investigation reveals various distribution of SiOxHycomplexes in both p-and n-type samples. From the conditions leading to porous silicon layer formation (the presence of holes) we suggest both SiOxHyand SiFxHycomplexes in the layer.


1992 ◽  
Vol 283 ◽  
Author(s):  
F. C. Rong ◽  
E. H. Poindexter ◽  
J. F. Harvey ◽  
D. C. Morton ◽  
R. A. Lux ◽  
...  

ABSTRACTWe have detected two dominant paramagnetic centers in porous silicon by electron paramagnetic resonance (EPR). One of them is isotropic, assigned to a defect in amorphous silicon oxide in the porous silicon layer. The other is anisotropic, and is very much like a Pb center at a planar Si/SiO2 interface. This EPR center is unambiguously identified as an •Si≡Si3 moiety, a silicon with dangling orbital, back-bonded to three silicon atoms, by 29 Si hyperfine structure (HFS) associated with the dangling orbital, and 29 Si superHFS from three neighboring silicon atoms, as similarly observed in the usual planar surface Pb structure. The dangling orbitals are highly localized and heavily p character. The disposition of dangling orbitals is evidence that the skeletal structure of luminescent porous silicon is crystalline and has a lattice which is aligned and continuous with the wafer substrate. The possibility that these centers are the major photoluminescent killers or quenchers is not supported by our hydrogen annealing experiments.


Author(s):  
Hasan A Hadi

In this paper, the structural properties of porous silicon layer PSL were reported. Photo-assisted (laser) electrochemical etching PECE technique used to fabrication PSL from n-type wafer silicon as a function of etching time. Optical microscopy OM image is confirmed that the surface topography of porous silicon layer formation was a mud-like structure. The porosity and thickness have been determined gravimetrically are varied from 61% to 82% and 7.2 µm to 9.4µm respectively. The XRD patterns show that one diffraction peak for all PSL through anodization duration and it is assigned to the (400) plane and data confirmed the porous silicon PS was nanocrystalline.


Author(s):  
Angelika Harter ◽  
Jana-Isabelle Polzin ◽  
Leonard Tutsch ◽  
Jan Temmler ◽  
Marc Hofmann ◽  
...  

2020 ◽  
Vol 12 (4) ◽  
pp. 04020-1-04020-5
Author(s):  
A. P. Oksanich ◽  
◽  
S. E. Pritchin ◽  
M. A. Mashchenko ◽  
A. Yu. Bobryshev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document